現(xiàn)給出如下命題:
(1)若直線l與平面α內(nèi)無窮多條直線都垂直,則直線l⊥平面α;
(2)空間三點(diǎn)確定一個平面;
(3) 先后拋兩枚硬幣,用事件A表示“第一次拋出現(xiàn)正面向上”,用事件B表示“第二次拋出現(xiàn)反面向上”,則事件A和B相互獨(dú)立且P(AB)=P(A)P(B)=
1
2
×
1
2
=
1
4
;
(4)樣本數(shù)據(jù)-1,-1,0,1,1的標(biāo)準(zhǔn)差是1.
則其中正確命題的序號是( 。
A、(1)、(4)
B、(1)、(3)
C、(2)、(3)、(4)
D、(3)、(4)
分析:若直線l與平面α內(nèi)無窮多條直線都垂直,則直線l⊥平面α,這種說法是錯誤的,這樣只有最后兩個選項可選,最后兩個選項的不同點(diǎn)在于選不選(2),只要判斷(2)是否正確,結(jié)果不正確.
解答:解:若直線l與平面α內(nèi)無窮多條直線都垂直,則直線l⊥平面α,這種說法是錯誤的,故(1)錯誤.
這樣只有最后兩個選項可選,最后兩個選項的不同點(diǎn)在于選不選(2),
所以只要判斷(2)是否正確,就可以.
根據(jù)空間不共線的三點(diǎn)確定一個平面,得到(2)不正確,
∴只有(3)(4)正確,
故選D.
點(diǎn)評:本題考查直線與平面的垂直的判定,考查不共線的三點(diǎn)確定一個平面,考查相互獨(dú)立事件同時發(fā)生的概率,考查標(biāo)準(zhǔn)差,本題是一個選擇題,有它本身獨(dú)特的解法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,如果對任意n∈N+都有
an+2-an+1an+1-an
=p(p為常數(shù)),則稱數(shù)列{an}為“等差比”數(shù)列,p叫數(shù)列{an}的“公差比”.現(xiàn)給出如下命題:
(1)等差比數(shù)列{an}的公差比p一定不為零;
(2)若數(shù)列{an}(n∈N+)是等比數(shù)列,則數(shù)列{an}一定是等差比數(shù)列;
(3)若等比數(shù)列{an}是等差比數(shù)列,則等比數(shù)列{an}的公比與公差比相等.
則正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)給出如下命題:
(1)若直線l與平面α內(nèi)無窮多條直線都垂直,則直線l⊥平面α;
(2)已知z∈C,則|z2|=z2;
(3)某種樂器發(fā)出的聲波可用函數(shù)y=0.001sin400πt(t∈R+)來描述,則該聲波的頻率是200赫茲;
(4)樣本數(shù)據(jù)-1,-1,0,1,1的標(biāo)準(zhǔn)差是
2
5
5

則其中正確命題的序號是( 。
A、(1)、(4)
B、(1)、(3)
C、(2)、(3)、(4)
D、(3)、(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)一模)現(xiàn)給出如下命題:
(1)若直線l上有兩個點(diǎn)到平面α的距離相等,則直線l∥平面α;
(2)“平面β上有四個不共線的點(diǎn)到平面α的距離相等”的充要條件是“平面β∥平面α”;
(3)若一個球的表面積是108π,則它的體積V=108
3
π
;
(4)若從總體中隨機(jī)抽取的樣本為-2,3,-1,1,1,4,3,3,0,-1,則該總體均值的點(diǎn)估計值是0.9.
則其中正確命題的序號是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)二模)現(xiàn)給出如下命題:
(1)若某音叉發(fā)出的聲波可用函數(shù)y=0.002sin800πt(t∈R+)描述,其中t的單位是秒,則該聲波的頻率是400赫茲;
(2)在△ABC中,若c2=a2+b2+ab,則∠C=
π
3
;
(3)從一個總體中隨機(jī)抽取一個樣本容量為10的樣本:11,10,12,10,9,8,9,11,12,8,則該總體標(biāo)準(zhǔn)差的點(diǎn)估計值是
2
5
3

則其中正確命題的序號是( 。

查看答案和解析>>

同步練習(xí)冊答案