【題目】已知橢圓、拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上取兩個點,將其坐標記錄于下表中:


3

2

4




0

4


)求的標準方程;

)請問是否存在直線滿足條件:的焦點交不同兩點且滿足?若存在,求出直線的方程;若不存在,說明理由.

【答案】(Ⅰ);(Ⅱ)

【解析】

(Ⅰ)設(shè)拋物線,則有,據(jù)此驗證個點知(3)、(4,4)在拋物線上,易求

設(shè),把點(20)(,)代入得:

解得

方程為

(Ⅱ)假設(shè)存在這樣的直線過拋物線焦點,設(shè)直線的方程為兩交點坐標為,

消去,得

,即,得

將①②代入(*)式,得,解得

所以假設(shè)成立,即存在直線滿足條件,且的方程為:

法二:容易驗證直線的斜率不存在時,不滿足題意;

當直線斜率存在時,假設(shè)存在直線過拋物線焦點,設(shè)其方程為,與的交點坐標為

消掉,得,

于是

,即,得

將①、②代入(*)式,得,解得;

所以存在直線滿足條件,且的方程為:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]:在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的直角坐標方程;

(2)判斷曲線是否相交,若相交,請求出交點間的距離;若不相交,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱柱中,,,的中點.

(1)證明:;

(2),點在平面的射影在上,且與平面所成角的正弦值為,求三棱柱的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)直線與函數(shù)的圖像恰有兩個不同的公共點.求出所有這樣的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是邊長為的正方形,的中點,以為折痕把折起,使點到達點的位置,且二面角為直二面角,連結(jié).

(1)記平面與平面相較于,在圖中作出,并說明畫法;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形所在平面與半圓弧所在平面垂直,上異于,的點

(1)證明:平面平面

(2)在線段上是否存在點,使得平面?說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位為了響應(yīng)疫情期間有序復工復產(chǎn)的號召,組織從疫區(qū)回來的甲、乙、丙、丁4名員工進行核酸檢測,現(xiàn)采用抽簽法決定檢測順序,在員工甲不是第一個檢測,員工乙不是最后一個檢測的條件下,員工丙第一個檢測的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列選項中,說法正確的是(

A.命題,的否定為,;

B.命題中,,則的逆否命題為真命題;

C.已知、m是兩條不同的直線,是個平面,若,則;

D.已知定義在R上的函數(shù),則為奇函數(shù)的充分必要條件.

查看答案和解析>>

同步練習冊答案