【題目】已知橢圓 :,點(diǎn) , 分別是橢圓 的左頂點(diǎn)和左焦點(diǎn),點(diǎn) 是 : 上的動(dòng)點(diǎn),若 是常數(shù),則橢圓 的離心率為________________.
【答案】
【解析】
設(shè)F(﹣c,0),由c2=a2﹣b2可求c,P(x1,y1),令=,則有(x1+a)2+y12=λ[(x1+c)2+y12]比較兩邊可得c,a的關(guān)系,結(jié)合橢圓的離心率公式,解方程可得可求.
解:設(shè)F(﹣c,0),c2=a2﹣b2,A(﹣a,0),P(x1,y1),
使得是常數(shù),設(shè)=,則有(x1+a)2+y12=λ[(c+x1)2+y12](x,λ是常數(shù)),
即b2+2ax1+a2=λ(b2+2cx1+c2),
比較兩邊,b2+a2=λ(b2+c2),a=λc,
故cb2+ca2=a(b2+c2),即ca2﹣c3+ca2=a3,
即e3﹣2e+1=0,
∴(e﹣1)(e2+e﹣1)=0,
∴e=1或e=,
∵0<e<1,∴e=.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求滿足下列條件的橢圓或雙曲線的標(biāo)準(zhǔn)方程:
(1)橢圓的焦點(diǎn)在軸上,焦距為4,且經(jīng)過點(diǎn);
(2)雙曲線的焦點(diǎn)在軸上,右焦點(diǎn)為,過作重直于軸的直線交雙曲線于,兩點(diǎn),且,離心率為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線 ,若圓上恰好存在兩個(gè)點(diǎn) ,,他們到直線 的距離為 ,則稱該圓為“完美型”圓.則下列圓中是“完美型”圓的是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,斜三棱柱ABC﹣A1B1C1的側(cè)面AA1C1C是菱形,側(cè)面ABB1A1⊥側(cè)面AA1C1C,A1B=AB=AA1=2,△AA1C1的面積為 ,且∠AA1C1為銳角.
(I) 求證:AA1⊥BC1;
(Ⅱ)求銳二面角B﹣AC﹣C1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題 方程 有兩個(gè)不相等的負(fù)實(shí)根,
命題 不等式 的解集為 ,
(1)若為真命題,求 的取值范圍.
(2)若 為真命題, 為假命題,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中內(nèi)動(dòng)點(diǎn)P(x,y)到圓F:x2+(y﹣1)2=1的圓心F的距離比它到直線y=﹣2的距離小1.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)P的軌跡為曲線E,過點(diǎn)F的直線l的斜率為k,直線l交曲線E于A,B兩點(diǎn),交圓F于C,D兩點(diǎn)(A,C兩點(diǎn)相鄰).
①若 =t ,當(dāng)t∈[1,2]時(shí),求k的取值范圍;
②過A,B兩點(diǎn)分別作曲線E的切線l1 , l2 , 兩切線交于點(diǎn)N,求△ACN與△BDN面積之積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,cos2C+2 cosC+2=0.
(1)求角C的大小;
(2)若b= a,△ABC的面積為 sinAsinB,求sinA及c的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com