已知橢圓的離心率為, 以原點為圓心、橢圓的短半軸長為半徑的圓與直線相切.

(1)求橢圓的方程;

(2)設(shè),過點作與軸不重合的直線交橢圓于、兩點,連結(jié)、分別交直線、兩點.試問直線、的斜率之積是否為定值,若是,求出該定值;若不是,請說明理由.

 

(1);(2)詳見解析.

【解析】

試題分析:(1)由直線和圓相切,求,再由離心率,得,從而求,進(jìn)而求橢圓的方程;(2)要說明直線、的斜率之積是否為定值,關(guān)鍵是確定、兩點的坐標(biāo).首先設(shè)直線的方程,并與橢圓聯(lián)立,設(shè),利用三點共線確定、兩點的坐標(biāo)的坐標(biāo),再計算直線、的斜率之積,這時會涉及到,結(jié)合根與系數(shù)的關(guān)系,研究其值是否為定值即可.

試題解析:(1),故 4分

(2)設(shè),若直線與縱軸垂直,

中有一點與重合,與題意不符,

故可設(shè)直線. 5分

將其與橢圓方程聯(lián)立,消去得:

6分

7分

三點共線可知,, 8分

同理可得 9分

10分

11分

所以

故直線的斜率為定值. 13分

考點:1、橢圓的標(biāo)準(zhǔn)方程和簡單幾何性質(zhì);2、直線和橢圓的位置關(guān)系.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省武漢市高三下學(xué)期4月調(diào)研測試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知數(shù)列滿足,且,設(shè)項和為,則使得取得最大值的序號的值為( )

A.7 B.8 C.7或8 D.8或9

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省天門市畢業(yè)生四月調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

將正三棱柱截去三個角(如圖(1)所示A、B、C分別是△GHI三邊的中點)得到幾何體如圖(2),則該幾何體按圖(2)所示方向的側(cè)視圖(或稱左視圖)為( )

A B C D

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省天門市畢業(yè)生四月調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

若復(fù)數(shù),其中i是虛數(shù)單位,則

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省天門市畢業(yè)生四月調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

函數(shù)的零點所在區(qū)間為( )

A.(0,) B.(,) C.(,1) D.(1,2)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省七市(州)高三年級聯(lián)合考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點為極點、軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點的極坐標(biāo)為,曲線的參數(shù)方程為為參數(shù)),則點到曲線上的點的距離的最小值為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省七市(州)高三年級聯(lián)合考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

如果對定義在上的函數(shù),對任意,都有則稱函數(shù)為“函數(shù)”.給出下列函數(shù):

;②;③;④.

其中函數(shù)是“函數(shù)”的個數(shù)為( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省七市(州)高三年級聯(lián)合考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

某個幾何體的三視圖如圖所示,(其中正視圖中的圓弧是半徑為2的半圓),則該幾何體的表面積為 .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省高三高考模擬沖刺卷(提優(yōu)卷)(二)文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知函數(shù),若關(guān)于的方程有三個不同的實根,則實數(shù)的取值范圍是.

 

查看答案和解析>>

同步練習(xí)冊答案