【題目】已知函數(shù)f(x)=x﹣lnx﹣1,g(x)=k(f(x)﹣x)+ ,(k∈R).
(1)求曲線y=f(x)在(2,f(2))處的切線方程;
(2)求函數(shù)g(x)的單調(diào)區(qū)間;
(3)當(dāng)1<k<3,x∈(1,e)時(shí),求證:g(x)>﹣ (1+ln3).

【答案】
(1)解:由f(x)=x﹣lnx﹣1,可得f′(x)=1﹣

即有f(2)=1﹣ln2,f′(2)=

所以切線方程是y﹣(1﹣ln2)= (x﹣2),

即為y= x﹣ln2;


(2)解:由f(x)=x﹣lnx﹣1,

可得g(x)=k(f(x)﹣x)+ = ﹣klnx﹣k,

g′(x)=x﹣ = ,(x>0),

①當(dāng)k≤0時(shí),g′(x)>0.

可得g(x)的單調(diào)遞增區(qū)間是(0,+∞),無(wú)單調(diào)遞減區(qū)間;

②當(dāng)k>0時(shí),令g′(x)>0,得x> ;令g′(x)<0,得0<x<

所以g(x)的單調(diào)遞增區(qū)間是( ,+∞),單調(diào)遞減區(qū)間是(0,


(3)證明:由(2)知,當(dāng)1<k<3,x∈(1,e),g(x)的導(dǎo)數(shù)和函數(shù)值變化情況如下圖

x

(1,

,e)

g′(x)

0

+

g(x)

遞減

極小值

遞增

所以g(x)的最小值是g( )=﹣ lnk;

令h(k)=﹣ lnk,可得h′(k)=﹣1﹣ lnk,

因?yàn)?<k<3,所以lnk>0,

所以h′(k)<0,

即有h(k)在(1,3)上單調(diào)遞減.

則h(k)>h(3)=﹣ ln3.

當(dāng)1<k<3,x∈(1,e)時(shí),g(x)>﹣ ln3=﹣ (1+ln3).

綜上所述,當(dāng)1<k<3,x∈(1,e)時(shí),g(x)>﹣ (1+ln3)


【解析】(1)求出函數(shù)的導(dǎo)數(shù),切點(diǎn)坐標(biāo),斜率,運(yùn)用點(diǎn)斜式方程即可求解切線方程;(2)求出g(x)的解析式,求得導(dǎo)數(shù),通過(guò)①當(dāng)k≤0時(shí),②當(dāng)k>0時(shí),由導(dǎo)數(shù)大于0,可得增區(qū)間,導(dǎo)數(shù)小于0,可得減區(qū)間,注意定義域;(3)通過(guò)(2),當(dāng)1<k<3,x∈(1,e),g(x)的導(dǎo)數(shù)和函數(shù)值變化情況,求出函數(shù)的極值、最值,構(gòu)造函數(shù)h(k)=﹣ lnk,求出導(dǎo)數(shù),判斷單調(diào)性,證明即可得到.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=ln 的零點(diǎn)一定位于區(qū)間(
A.(1,2)
B.(2,3)
C.(3,4)
D.(4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)同時(shí)滿足①對(duì)于定義域上的任意x,恒有f(x)+f(﹣x)=0;②對(duì)于定義域上的任意x1、x2 , 當(dāng)x1≠x2時(shí),恒有 <0,則稱函數(shù)f(x)為“理想函數(shù)”.給出下列三個(gè)函數(shù)中:(1)f(x)= ;(2)f(x)=x+1;(3)f(x)= ,能被稱為“理想函數(shù)”的有(填相應(yīng)的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知(x+ n的展開(kāi)式中的第二項(xiàng)和第三項(xiàng)的系數(shù)相等.
(1)求n的值;
(2)求展開(kāi)式中所有二項(xiàng)式系數(shù)的和;
(3)求展開(kāi)式中所有的有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的長(zhǎng)軸長(zhǎng)為,且橢圓與圓 的公共弦長(zhǎng)為.

(1)求橢圓的方程.

(2)經(jīng)過(guò)原點(diǎn)作直線(不與坐標(biāo)軸重合)交橢圓于, 兩點(diǎn), 軸于點(diǎn),點(diǎn)在橢圓上,且,求證: , , 三點(diǎn)共線..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017高考特別強(qiáng)調(diào)了要增加對(duì)數(shù)學(xué)文化的考查,為此某校高三年級(jí)特命制了一套與數(shù)學(xué)文化有關(guān)的專題訓(xùn)練卷(文、理科試卷滿分均為100分),并對(duì)整個(gè)高三年級(jí)的學(xué)生進(jìn)行了測(cè)試.現(xiàn)從這些學(xué)生中隨機(jī)抽取了50名學(xué)生的成績(jī),按照成績(jī)?yōu)?/span>,,…,分成了5組,制成了如圖所示的頻率分布直方圖(假定每名學(xué)生的成績(jī)均不低于50分).

(1)求頻率分布直方圖中的的值,并估計(jì)所抽取的50名學(xué)生成績(jī)的平均數(shù)、中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);

(2)若高三年級(jí)共有2000名學(xué)生,試估計(jì)高三學(xué)生中這次測(cè)試成績(jī)不低于70分的人數(shù);

(3)若利用分層抽樣的方法從樣本中成績(jī)不低于70分的三組學(xué)生中抽取6人,再?gòu)倪@6人中隨機(jī)抽取3人參加這次考試的考后分析會(huì),試求后兩組中至少有1人被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=4x+a2x+3,a∈R.
(1)當(dāng)a=﹣4時(shí),且x∈[0,2],求函數(shù)f(x)的值域;
(2)若關(guān)于x的方程f(x)=0在(0,+∞)上有兩個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《漢字聽(tīng)寫(xiě)大會(huì)》不斷創(chuàng)收視新高,為了避免“書(shū)寫(xiě)危機(jī)”弘揚(yáng)傳統(tǒng)文化,某市對(duì)全市10萬(wàn)名市民進(jìn)行了漢字聽(tīng)寫(xiě)測(cè)試,調(diào)查數(shù)據(jù)顯示市民的成績(jī)服從正態(tài)分布.現(xiàn)從某社區(qū)居民中隨機(jī)抽取50名市民進(jìn)行聽(tīng)寫(xiě)測(cè)試,發(fā)現(xiàn)被測(cè)試市民正確書(shū)寫(xiě)漢字的個(gè)數(shù)全部在160到184之間,將測(cè)試結(jié)果按如下方式分成六組:第一組,第二組,…,第六組,如圖是按上述分組方法得到的頻率分布直方圖.

(1)若電視臺(tái)記者要從抽取的市民中選1人進(jìn)行采訪,求被采訪人恰好在第1組或第4組的概率;

(2)已知第1組市民中男性有3名,組織方要從第1組中隨機(jī)抽取2名市民組成弘揚(yáng)傳統(tǒng)文化宣傳隊(duì),求至少有1名女性群眾的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為上位于第一象限的任意一點(diǎn),過(guò)點(diǎn)的直線于另一點(diǎn),交軸的正半軸于點(diǎn).

(1)若當(dāng)點(diǎn)的橫坐標(biāo)為,且為等腰三角形,求的方程;

(2)對(duì)于(1)中求出的拋物線,若點(diǎn),記點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為軸于點(diǎn),且,求證:點(diǎn)的坐標(biāo)為,并求點(diǎn)到直線的距離的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案