如圖,已知四棱錐P-ABCD的底面為等腰梯形,AB∥CD,AC⊥BD,垂足為H,PH是四棱錐的高.
(Ⅰ)證明:平面PAC⊥平面PBD;
(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱錐P-ABCD的體積.
解:(1)因?yàn)镻H是四棱錐P-ABCD的高. 所以ACPH,又ACBD,PH,BD都在平PHD內(nèi),且PHBD=H. 所以AC平面PBD. 故平面PAC平面PBD 6分 (2)因?yàn)锳BCD為等腰梯形,ABCD,ACBD,AB=. 所以HA=HB=. 因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/2236/0018/aa3a70603a45477156c003ae806333c6/C/Image47.gif" width=17 height=17>APB=ADR=60° 所以PA=PB=,HD=HC=1. 可得PH=. 等腰梯形ABCD的面積為S=AC×BD=2+ 9分 所以四棱錐的體積為V=×(2+)×= 12分 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
8
| ||
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
PN |
1 |
2 |
NC |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com