計算:
(1)
sin7°+cos15°sin8°
cos7°-sin15°sin8°
;
(2)lg25+
2
3
lg8+lg5•lg20+(lg20)2
考點(diǎn):兩角和與差的正弦函數(shù),對數(shù)的運(yùn)算性質(zhì)
專題:解三角形
分析:(1)利用兩角和差的正弦、余弦公式,化簡所給的式子,可得結(jié)果.
(2)利用對數(shù)的運(yùn)算性質(zhì)化簡所給的式子,從而得出結(jié)論.
解答: 解:(1)
sin7°+cos15°sin8°
cos7°-sin15°sin8°
=
sin(15°-8°)+cos15°sin8°
cos(15°-8°)-sin15°sin8°
=
sin15°cos8°-cos15°sin8°+cos15°sin8°
cos15°cos8°+sin15°sin8°-sin15°sin8°

=
sin15°cos8°
cos15°cos8°
=tan15°=tan(45°-30°)=
tan45°-tan30°
1+tan45°tan30°
=
1-
3
3
1+1×
3
3
=
3-
3
3+
3
=2-
3

(2)lg25+
2
3
lg8+lg5•lg20+(lg20)2 =2lg5+2lg2+lg20(lg5+lg20)=2+lg20•lg100
=2+2lg20=2+2(1+lg2)=4+2lg2.
點(diǎn)評:本題主要考查兩角和差的三角公式、對數(shù)的運(yùn)算性質(zhì)的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某班主任對全班50名學(xué)生的學(xué)習(xí)積極性和對待班級工作態(tài)度進(jìn)行了調(diào)查,統(tǒng)計數(shù)據(jù)如表所示:
積極參加班級工作 不太主動參加班級工作 總計
學(xué)習(xí)積極性高 18 7 25
學(xué)習(xí)積極性一般 6 19 25
總計 24 26 50
(1)如果隨機(jī)抽查這個班的一名學(xué)生,那么抽到積極參加班級工作的學(xué)生的概率是多少?抽到不太主動參加班級工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)能否在犯錯誤的概率不超過0.01的前提下認(rèn)為學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度是否有關(guān)?并說明理由.附:k2=
n(ad-bc)2
(a+b)(c+d+(a+c)(b+d)
(其中n=a+b+c+d為樣本容量)p(K2≥k0)與k0對應(yīng)值表為:
p(K2≥k0 0.10 0.05 0.025 0.010 0.005 0.001
k0 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(-sinωx-cosωx,2
3
cosωx),
b
=(-sinωx+cosωx,sinωx),設(shè)函數(shù)f(x)=
a
b
+λ(x∈R)的圖象關(guān)于(
10
,λ)對稱,其中λ,ω為常數(shù),且ω∈(
1
2
,1)
(1)求函數(shù)f(x)的最小正周期T; 
(2)函數(shù)過(
π
4
,0)求函數(shù)在[0,
5
]上取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)F(-1,0),離心率為
2
2
,函數(shù)f(x)=
1
2x
+
3
4
x,
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)P(t,0)(t≠0),Q(f(t),0),過P的直線l交橢圓P于A,B兩點(diǎn),求
QA
QB
的最小值,并求此時的t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a2+8a+16
+|b-1|=0,當(dāng)k取何值時,方程kx2+ax+b=0有兩個不相等實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的導(dǎo)數(shù):
(1)y=(2x2+3)(3x-1);
(2)y=(
x
-2)2
(3)y=x-sin
x
cos
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)的二次項系數(shù)為負(fù),對任意x∈R恒有f(3-x)=f(3+x),試問當(dāng)f(2+2x-x2)與f(2-x-2x2)滿足什么關(guān)系時才有-3<x<0?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
a
x
,其中a∈R.
(Ⅰ)當(dāng)a=-1時判斷f(x)的單調(diào)性;
(Ⅱ)若g(x)=f(x)+ax在其定義域內(nèi)為減函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅲ)當(dāng)a=0時f(x)的圖象關(guān)于y=x對稱得到函數(shù)h(x),若直線y=kx與曲線y=2x+
1
h(x)
沒有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形的長AD=2
3
,寬AB=1,A,D兩點(diǎn)分別在x,y軸的正半軸上移動,B,C兩點(diǎn)在第一象限.問:當(dāng)∠OAD=
 
時,OB的長度最大.

查看答案和解析>>

同步練習(xí)冊答案