【題目】已知某幾何體直觀圖和三視圖如圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形.
(1)求證: ;
(2);
(3)設(shè)為中點(diǎn),在邊上找一點(diǎn),使//平面并求.
【答案】(1)見解析(2)(3)
【解析】試題分析:(1)因?yàn)樵搸缀误w的正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形, 兩兩垂直,以為坐標(biāo)原點(diǎn),分別以所在直線別為軸建立空間直角坐標(biāo)系,證出后即可證明平面;〔2〕求出平面的一個(gè)法向量,利用與此法向量的夾角的余弦可求出直線與平面所成的角正弦值;(3)設(shè)為上一點(diǎn),由平面,得知,利用向量數(shù)量積為求出的值,并求出的值.
試題解析:(1)證明:因?yàn)樵搸缀误w的正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形,
∴ BA,BC,BB1兩兩垂直。
以BA,BC,BB1分別為軸建立空間直角坐標(biāo)系,則N(4,4,0),B1(0, 8,0),C1(0,8,4),C(0,0,4)∵=(4,4,0)·(-4,4,0)=-16+16=0=(4,4,0)·(0,0,4)=0 ∴BN⊥NB1,BN⊥B1C1且NB1與B1C1相交于B1,
∴BN⊥平面C1B1N;
(2)設(shè)為平面的一個(gè)法向量,則
則
(3)∵M(2,0,0).設(shè)P(0,0,a)為BC上一點(diǎn),則,
∵MP//平面CNB1,
∴
又,
∴當(dāng)PB=1時(shí)MP//平面CNB1 .
【方法點(diǎn)晴】本題主要考查利用空間向量求二面角、證明線面垂直,求線面角,屬于難題. 空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中, , , , 是中點(diǎn)(如圖1).將沿折起到圖2中的位置,得到四棱錐.
(1)將沿折起的過程中, 平面是否成立?并證明你的結(jié)論;
(2)若,過的平面交于點(diǎn),且為的中點(diǎn),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),它與曲線
C:(y-2)2-x2=1交于A、B兩點(diǎn).
(1)求|AB|的長;
(2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)P的極坐標(biāo)為,求點(diǎn)P到線段AB中點(diǎn)M的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于正整數(shù)集合(,),如果去掉其中任意一個(gè)元素()之后,剩余的所有元素組成的集合都能分為兩個(gè)交集為空集的集合,且這兩個(gè)集合的所有元素之和相等,就稱集合為“和諧集”.
(1)判斷集合是否為“和諧集”,并說明理由;
(2)求證:集合是“和諧集”;
(3)求證:若集合是“和諧集”,則集合中元素個(gè)數(shù)為奇數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求證:函數(shù)f(x)-g(x)必有零點(diǎn);
(2)設(shè)函數(shù)G(x)=f(x)-g(x)-1
①若函數(shù)G(x)有兩相異零點(diǎn)且在上是減函數(shù),求實(shí)數(shù)m的取值范圍。
②是否存在整數(shù)a,b使得的解集恰好為若存在,求出a,b的值,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖為某校數(shù)學(xué)專業(yè)N名畢業(yè)生的綜合測評成績(百分制)頻率分布直方圖,已知80-90分?jǐn)?shù)段的學(xué)員數(shù)為21人。
(1)求該專業(yè)畢業(yè)總?cè)藬?shù)N和90-95分?jǐn)?shù)段內(nèi)的人數(shù);
(2)現(xiàn)欲將90-95分?jǐn)?shù)段內(nèi)的n名人分配到幾所學(xué)校,從中安排2人到甲學(xué)校去,若n人中僅有兩名男生,求安排結(jié)果至少有一名男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為激發(fā)學(xué)生學(xué)習(xí)的興趣,老師上課時(shí)在黑板上寫出三個(gè)集合: ;然后叫甲、乙、丙三位同學(xué)到講臺上,并將“”中的數(shù)告訴了他們,要求他們各用一句話來描述,以便同學(xué)們能確定該數(shù),以下是甲、乙、丙三位同學(xué)的描述:
甲:此數(shù)為小于6的正整數(shù);乙:A是B成立的充分不必要條件;
丙:A是C成立的必要不充分條件
若老師評說這三位同學(xué)都說得對,則“”中的數(shù)為 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的有( )
①隨機(jī)事件A的概率是頻率的穩(wěn)定值,頻率是概率的近似值.
②一次試驗(yàn)中不同的基本事件不可能同時(shí)發(fā)生.
③任意事件A發(fā)生的概率總滿足.
④若事件A的概率為0,則A是不可能事件.
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,點(diǎn)在線段上, , ,沿直線將翻折成,使點(diǎn)在平面上的射影落在直線上.
(Ⅰ)求證:直線平面;
(Ⅱ)求二面角的平面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com