【題目】如圖,在矩形中,點(diǎn)在線段上, , ,沿直線翻折成,使點(diǎn)在平面上的射影落在直線上.

)求證:直線平面;

)求二面角的平面角的余弦值.

【答案】(1)見解析(2)

【解析】試題分析:(1根據(jù)射影定義得,再根據(jù)線面垂直得,最后根據(jù)線面垂直判定定理得結(jié)論2連接于點(diǎn).則根據(jù)二面角定義得是二面角的平面角的平面角.再通過(guò)解三角形得二面角的平面角的余弦值.

試題解析(Ⅰ)證明:在線段上取點(diǎn),使,連接于點(diǎn).

正方形中, 翻折后, , ,

, 平面,

平面, 平面平面

平面平面

點(diǎn)在平面上的射影落在直線上,

點(diǎn)在平面上的射影落在直線上,

點(diǎn)為直線的交點(diǎn),

平面即平面 直線平面;

(Ⅱ)由(Ⅰ)得是二面角的平面角的平面角.

,在矩形中,可求得, .

中, ,

二面角的平面角的余弦值為.

點(diǎn)睛:立體幾何中折疊問(wèn)題,要注重折疊前后垂直關(guān)系的變化,不變的垂直關(guān)系是解決問(wèn)題的關(guān)鍵條件.線面角的尋找,主要找射影,即需從線面垂直出發(fā)確定射影,進(jìn)而確定線面角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某幾何體直觀圖和三視圖如圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形.

1)求證: ;

2;

3設(shè)中點(diǎn),在邊上找一點(diǎn),使//平面并求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若曲線處的切線與軸垂直,求的最大值;

(2)若對(duì)任意都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,以為概率的事件是(  )

A. 恰有1件一等品 B. 至少有一件一等品

C. 至多有一件一等品 D. 都不是一等品

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】7位歌手(17號(hào))參加一場(chǎng)歌唱比賽,由500名大眾評(píng)委現(xiàn)場(chǎng)投票決定歌手名次.根據(jù)年齡將大眾評(píng)委分為五組,各組的人數(shù)如下:

組別

A

B

C

D

E

人數(shù)

50

100

150

150

50

1)為了調(diào)查評(píng)委對(duì)7位歌手的支持情況,現(xiàn)用分層抽樣方法從各組中抽取若干評(píng)委,其中從B組抽取了6人,請(qǐng)將其余各組抽取的人數(shù)填入下表.

組別

A

B

C

D

E

人數(shù)

50

100

150

150

50

抽取人數(shù)


6




2)在(1)中,若A,B兩組被抽到的評(píng)委中各有2人支持1號(hào)歌手,現(xiàn)從這兩組被抽到的評(píng)委中分別任選1人,求這2人都支持1號(hào)歌手的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(1)求證:當(dāng)時(shí),對(duì)任意都有

(2)若函數(shù)有兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方體中,,,點(diǎn)E是線段AB中點(diǎn).

證明:;

求二面角的大小的余弦值;

A點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,且過(guò)點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若的頂點(diǎn)、在橢圓上, 所在的直線斜率為, 所在的直線斜率為,若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形,

直線與以橢圓C的右焦點(diǎn)為圓心,以橢圓的長(zhǎng)半軸長(zhǎng)為半徑的圓相切.

)求橢圓C的方程;

)設(shè)P為橢圓C上一點(diǎn),若過(guò)點(diǎn)的直線與橢圓C相交于不同的兩點(diǎn)ST,

滿足O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案