20、已知等腰梯形ABCD中,AB=2CD,,橢圓過C、D、E三點(diǎn),且以A,B為焦點(diǎn).
(1)若AB=4,梯形的高為,求橢圓方程;
(2)若,求橢圓離心率e的取值范圍.

【答案】分析:(1)假設(shè)橢圓的方程,確定A,C的坐標(biāo),代入橢圓方程,即可求得橢圓的方程;
(2)確定點(diǎn)A,E,C坐標(biāo),代入橢圓方程,利用,即可求橢圓離心率e的取值范圍.
解答:解:(1)由題意,設(shè)橢圓方程為:,則c=2,C(1,
代入橢圓方程可得:,∵a2=b2+4,∴a2=16,b2=12
∴橢圓方程為;
(2)設(shè)橢圓方程為:,E(m,n),C(),
∵A(-c,0),,
∴E(
將E,C的坐標(biāo)代入可得:
2(1-)=(1+λ)2
∴e2(1-λ)=1+2λ
∴e2=-2+





點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查橢圓的幾何性質(zhì),考查學(xué)生分析解決問題的能力,綜合性強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

20、已知等腰梯形ABCD中,AB=2CD,
AE
EC
,橢圓過C、D、E三點(diǎn),且以A,B為焦點(diǎn).
(1)若AB=4,梯形的高為
3
5
2
,求橢圓方程;
(2)若-
1
3
≤λ≤-
1
4
,求橢圓離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等腰梯形ABCD的上底AB=3,下底CD=1,高DO=1.以高線DO為折痕,將平面ADO折起,使得平面ADO⊥平面BCDO,點(diǎn)H為棱AC的中點(diǎn).
(1)求直線OC與直線AB所成的余弦值;
(2)求平面ADO與平面ACB所成的銳二面角的余弦值;
(3)在平面ADO內(nèi)找一點(diǎn)G,使得GH⊥平面ACB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇期末題 題型:解答題

已知等腰梯形ABCD中,AB=2CD,,橢圓過C、D、E三點(diǎn),且以A,B為焦點(diǎn).
(1)若AB=4,梯形的高為,求橢圓方程;
(2)若,求橢圓離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年浙江省杭州、紹興、金華、溫州、衢州七校高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知等腰梯形ABCD的上底AB=3,下底CD=1,高DO=1.以高線DO為折痕,將平面ADO折起,使得平面ADO⊥平面BCDO,點(diǎn)H為棱AC的中點(diǎn).
(1)求直線OC與直線AB所成的余弦值;
(2)求平面ADO與平面ACB所成的銳二面角的余弦值;
(3)在平面ADO內(nèi)找一點(diǎn)G,使得GH⊥平面ACB.

查看答案和解析>>

同步練習(xí)冊(cè)答案