在△ABC中,角A,B,C所對的邊分別為a,b,c,a=1,b=
7
,c=
3
,則B=( 。
A、
π
6
B、
6
C、
π
3
D、
3
分析:根據(jù)余弦定理表示出cosB,把a,b和c的值代入即可求出cosB的值,由B的范圍,利用特殊角的三角函數(shù)值即可求出B的值.
解答:解:根據(jù)余弦定理得:
cosB=
a2+c2-b2
2ac
=
1+3-7
2
3
=-
3
2

由B∈(0,π),得到B=
6

故選B
點評:此題考查學生靈活運用余弦定理及特殊角的三角函數(shù)值化簡求值,是一道基礎題.學生做題時注意B為三角形中的角這個隱含條件.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大;
(2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習冊答案