已知函數(shù),數(shù)列滿(mǎn)足.
(1)證明數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)記,求.
(1)見(jiàn)解析          (2)
(1)由已知得 ----------2分
∴數(shù)列是首項(xiàng)為1,公差3的等差數(shù)列. ----------4分
所以,即 ---------------6分
(2) ∵----------8分
=-----10分
=----------14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
已知數(shù)列的前三項(xiàng)與數(shù)列的前三項(xiàng)對(duì)應(yīng)相同,且對(duì)任意的都成立,數(shù)列是等差數(shù)列
(1)  求數(shù)列的通項(xiàng)公式;
(2)  是否存在使得?請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.(本小題滿(mǎn)分13分)
已知數(shù)列是各項(xiàng)均不為的等差數(shù)列,公差為,為其前項(xiàng)和.向量、滿(mǎn)足,.?dāng)?shù)列滿(mǎn)足為數(shù)列的前n項(xiàng)和.
(Ⅰ)求、
(Ⅱ)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列中,,且滿(mǎn)足,
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè)為非零整數(shù),),試確定的值,使得對(duì)任意,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分14分)數(shù)列是公比為的等比數(shù)列,且的等比中項(xiàng),前項(xiàng)和為.?dāng)?shù)列 是等差數(shù)列,,前項(xiàng)和滿(mǎn)足為常數(shù),且
(Ⅰ)求數(shù)列的通項(xiàng)公式及的值;
(Ⅱ)比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)等差數(shù)列的前項(xiàng)和為,公比是正數(shù)的等比數(shù)列的前項(xiàng)和為,已知
(1)求的通項(xiàng)公式。
(2)若數(shù)列滿(mǎn)足 求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)Sn是等差數(shù)列的前n項(xiàng)和,若S7 = 35,則a4 的值為(   )
A.8B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分14分)在數(shù)列中,
(1)求數(shù)列的通項(xiàng);
(2)若對(duì)任意的正整數(shù)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列,,…,那么數(shù)列=前n項(xiàng)和為(  )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案