設(shè)函數(shù)f(x)的定義域?yàn)?i>D,若存在非零實(shí)數(shù)l使得對(duì)于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱函數(shù)f(x)為M上的l高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=x是R上的1高調(diào)函數(shù);
②函數(shù)f(x)=sin 2x為R上的π高調(diào)函數(shù);
③如果定義域?yàn)閇-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞).
其中正確的命題是________.(寫出所有正確命題的序號(hào))
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,AB是圓O的直徑,弦BD、CA的延長(zhǎng)線相交于點(diǎn)E,EF垂直BA的延長(zhǎng)線于點(diǎn)F.求證:∠DEA=∠DFA.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
下列推理中屬于歸納推理且結(jié)論正確的是( )
A.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.由an=2n-1,求出S1=12,S2=22,S3=32,…,推斷:Sn=n2
B.由f(x)=xcos x滿足f(-x)=-f(x)對(duì)∀x∈R都成立,推斷:f(x)=xcos x為奇函數(shù)
C.由圓x2+y2=r2的面積S=πr2,推斷:橢圓=1(a>b>0)的面積S=πab
D.由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推斷:對(duì)一切n∈N*,(n+1)2>2n
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知e1,e2是兩個(gè)單位向量,其夾角為θ,若向量m=2e1+3e2,則|m|=1的充要條件是( )
A.θ=π B.θ=
C.θ= D.θ=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)y=f(x)的圖象關(guān)于y軸對(duì)稱,且當(dāng)x∈(-∞,0)時(shí),f(x)+xf′(x)<0成立,a=(20.2)·f(20.2),b=(logπ3)·f(logπ3),c=(log39)·f(log39),則a,b,c的大小關(guān)系是( )
A.b>a>c B.c>a>b
C.c>b>a D.a>c>b
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)f(x)=x3-ax2-ax,g(x)=2x2+4x+c.
(1)試問(wèn)函數(shù)f(x)能否在x=-1時(shí)取得極值?說(shuō)明理由;
(2)若a=-1,當(dāng)x∈[-3,4]時(shí),函數(shù)f(x)與g(x)的圖象有兩個(gè)公共點(diǎn),求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知常數(shù)a,b,c都是實(shí)數(shù),f(x)=ax3+bx2+cx-34的導(dǎo)函數(shù)為f′ (x),f′(x)≤0的解集為{x|-2≤x≤3},若f(x)的極小值等于-115,則a的值是( )
A.- B.
C.2 D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知全集U={0,1,2,3,4},A={1,2,3},B={2,4},則如圖陰影部分表示的集合為( )
A.{0,2} B.{0,1,3}
C.{1,3,4} D.{2,3,4}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知矩陣A=的一個(gè)特征值為2,其對(duì)應(yīng)的一個(gè)特征向量為α=.
(1)求矩陣A;
(2)若A,求x,y的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com