15.已知直線l1:ax+y+1=0,l2:x+y+2=0,若l1⊥l2,則實數(shù)a的值是-1.

分析 利用兩條直線相互垂直的充要條件即可得出.

解答 解:∵l1⊥l2,則-1×(-a)=-1,
解得a=-1.
故答案為:-1.

點評 本題考查了兩條直線相互垂直的充要條件,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

6.某同學先后投擲一枚骰子兩次,第一次向上的點數(shù)記為x,第二次向上的點數(shù)記為y,在直角坐標xOy系中,以(x,y)為坐標的點落在直線2x-y=1上的概率為$\frac{1}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)y=$\frac{{\sqrt{9-{x^2}}}}{{{{log}_2}({x+1})}}$的定義域是(  )
A.(-1,3)B.(-1,3]C.(-1,0)∪(0,3)D.(-1,0)∪(0,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若點M($\frac{1}{3}$,a)在函數(shù)y=log3x的圖象上,且角θ的終邊所在直線過點M,則tanθ=(  )
A.$-\frac{1}{3}$B.$±\frac{1}{3}$C.-3D.±3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=ln(x-1)-kx+k+1.
(Ⅰ)當k=1時,證明:f(x)≤0;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)證明:$\frac{ln2}{3}$+$\frac{ln3}{4}$+…+$\frac{lnn}{n+1}$<$\frac{{n}^{2}-n}{4}$(n∈N*,且n≥2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.一個畫家有14個邊長為1m的正方體,他在地面上把它擺成如圖所示的形式,然后,他把露出的表面都染上顏色,那么被染上顏色的面積為33m2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若集合A={x|x2-4x<0},B={0,1,2,3,4},則A∩B=( 。
A.{0,1,2,3}B.{1,2,3}C.{1,2,3,4}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.向邊長分別為3、4、5的三角形區(qū)域內(nèi)隨機投一點M,則該點M與三角形三個頂點距離都大于1的概率為( 。
A.1-$\frac{π}{18}$B.1-$\frac{π}{12}$C.1-$\frac{π}{9}$D.1-$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)/f(x)=($\sqrt{2}$)x+3x的零點所在的區(qū)間是( 。
A.(-2,-1)B.(0,1)C.(-1,0)D.(1,2)

查看答案和解析>>

同步練習冊答案