數(shù)列
的前
項和為
,數(shù)列
是首項為
,公差為
的等差數(shù)列,且
成等比數(shù)列.
(Ⅰ)求數(shù)列
與
的通項公式;
(Ⅱ)若
,求數(shù)列
的前
項和
.
(Ⅰ)
;(Ⅱ)
.
試題分析:(Ⅰ)通過討論
時,
,驗證
,是否滿足上式,確定得到數(shù)列{
}的通項公式.進一步應用等比數(shù)列知識,建立公差的方程,確定得到
.(Ⅱ)針對
利用“裂項相消法”求得
.
試題解析:(Ⅰ)當
,時
, 2分
又
,也滿足上式,
所以數(shù)列{
}的通項公式為
. 3分
,設公差為
,則由
成等比數(shù)列,
得
, 4分
解得
(舍去)或
, 5分
所以數(shù)列
的通項公式為
. 6分
(Ⅱ)解:
8分
數(shù)列
的前
項和
10分
. 12分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
設等差數(shù)列{a
n}的前n項和為S
n,且S
4=4S
2,a
2n=2a
n+1.
(Ⅰ)求數(shù)列{a
n}的通項公式;
(Ⅱ)證明:對一切正整數(shù)n,有
+
+…+
<
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知等差數(shù)列
的前
項和為
,且
.
(I)求數(shù)列
的通項公式;
(II)設等比數(shù)列
,若
,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列
是首項為1,公差為
的等差數(shù)列,數(shù)列
是首項為1,公比為
的等比
數(shù)列.
(1)若
,
,求數(shù)列
的前
項和;
(2)若存在正整數(shù)
,使得
.試比較
與
的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
等差數(shù)列
中
,前
項和為
,
,則
的值為__________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若
為等差數(shù)列
的前n項和,
,
,則
與
的等比中項為( )
B.
C.4 D.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知等差數(shù)列
滿足
,
,則數(shù)列
的前10項的和等于( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設S
n是等差數(shù)列{a
n}的前n項和,若
,則
=
查看答案和解析>>