解答:解:(Ⅰ)因?yàn)閍
1=0,a
2=2,所以
a3=(1+cos2)a1+4sin2=a1+4=4,a
4=(1+cos
2π)a
2+4sin
2π=2a
2=4,一般地,當(dāng)n=2k-1(k∈N
*)時(shí),
a2k+1=[1+cos2]a2k-1+4sin2π=a2k-1+4,
即a
2k+1-a
2k-1=4.所以數(shù)列{a
2k-1}是首項(xiàng)為0、公差為4的等差數(shù)列,
因此a
2k-1=4(k-1).
當(dāng)n=2k(k∈N
*)時(shí),
a2k+2=[1+cos2]a2k+4sin2π=2a2k,
所以數(shù)列{a
2k}是首項(xiàng)為2、公比為2的等比數(shù)列,因此a
2k=2
k.
故數(shù)列{a
n}的通項(xiàng)公式為
an= | 2(n-1),n=2k-1(k∈N*) | 2,n=2k(k∈N*) |
| |
(Ⅱ)由(Ⅰ)知,S
k=a
1+a
3+…+a
2k-1=0+4+…+4(k-1)=2k(k-1),T
k=a
2+a
4+…+a
2k=2+2
2+2
k=2
k+1-2,
Wk==.
于是W
1=0,W
2=1,
W3=,
W4=,
W5=,
W6=.
下面證明:當(dāng)k≥6時(shí),W
k<1.事實(shí)上,當(dāng)k≥6時(shí),
Wk+1-Wk=-=<0,
即W
k+1<W
k.
又W
6<1,所以當(dāng)k≥6時(shí),W
k<1.
故滿(mǎn)足W
k>1的所有k的值為3,4,5.