(本小題滿分13分)

橢圓C:的離心率為,且過點(diǎn)(2,0)

(1)求橢圓C的方程;

(2)設(shè)直線與橢圓C交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),若OAB為直角三角形,求的值。

 

【答案】

 

(1)

(2)

【解析】解(1)依題意,可知,又,所以可知

        ∴

        故所求的橢圓方程為 ……………………………………………3分

(2)聯(lián)立方程消去    …………4分

  解得

設(shè)  則,    ………………5分

①  若,則可知,即

可解得

經(jīng)檢驗(yàn)滿足條件

所以直線滿足題意…………………………………………………………9分

② 若,則(或

聯(lián)立方程 解得………………………10分

Ⅰ、若A(,-) ,則可知

Ⅱ、若B(-, ) ,則可知

所以也滿足題意……………………………………………………………12分

綜上可知 ,為所求的直線……………………………13分

另解:②  若,則(或

聯(lián)立方程解得,………………………………………………10分

則點(diǎn)(上,代入解得,所以也滿足題意

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點(diǎn)。

(Ⅰ)求證:∥平面

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

同步練習(xí)冊答案