已知P是邊長(zhǎng)為2的正方形ABCD內(nèi)的點(diǎn),若△PAB,△PBC面積均不大于1,則
AP
BP
取值范圍是( 。
A、(-1,2)
B、[-1,1]
C、(0,
1
2
]
D、[
1
2
,
3
2
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專(zhuān)題:平面向量及應(yīng)用
分析:設(shè)點(diǎn)P(x,y),由已知條件可得x,y滿足的可行域,利用數(shù)量積可得要求的問(wèn)題,進(jìn)而即可解決.
解答: 解:如右圖所示:設(shè)點(diǎn)P(x,y).
∵△PAB,△PBC面積均不大于1,
1
2
×2y≤1,
1
2
×2×(2-x)≤1,0≤x≤2,0≤y≤2.
解得0≤y≤1,1≤x≤2.如左圖所示的可行域:
AP
BP
=(x,y)•(x-2,y)=x(x-2)+y2=(x-1)2+y2-1.
∵d2=(x-1)2+y2表示的是可行域中的任意一點(diǎn)M與E(1,0)的距離的平方,
∴0≤d2≤(
2
2,∴-1≤d2-1≤1,即-1≤
AP
BP
≤1.
故選B.
點(diǎn)評(píng):本題考查了向量的數(shù)量積;利用面積和向量的數(shù)量積正確得出x,y的取值范圍及要解決的問(wèn)題和充分結(jié)合圖形是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線與直線x=a的交點(diǎn)到另一條漸近線的距離等于半焦距,則雙曲線的離心率是( 。
A、2
B、
2
C、
3
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)四面體如圖,若該四面體的正視圖(主視圖)、側(cè)視圖(左視圖)和俯視圖都是直角邊長(zhǎng)為1的等腰直角三角形,則它的體積V=(  )
A、
1
2
B、
1
3
C、
1
6
D、
1
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列橢圓的長(zhǎng)軸長(zhǎng)和短軸長(zhǎng)、離心率、焦點(diǎn)坐標(biāo).
(1)x2+4y2=16;(2)9x2+y2=81.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)與直線y=
3
x無(wú)交點(diǎn),則
b
a
的取值范圍是( 。
A、(0,
3
B、(0,
3
]
C、(
3
,+∞)
D、[
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,曲線ρ=2上到直線ρcos(θ-
π
4
)=1的距離為1的點(diǎn)的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記集合A={(x,y)|
0≤x≤1
0≤y≤1
 }、B={(x,y)|x2+y2≤1}構(gòu)成的平面區(qū)域分別為M、N,現(xiàn)隨機(jī)地向N中拋一粒豆子(大小忽略不計(jì)),則該豆子落入M中的概率為(  )
A、
1
4
B、
1
π
C、
1
2
D、
2
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

畫(huà)出y=x 
2
的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了了解某市創(chuàng)建文明城市過(guò)程中,學(xué)生對(duì)創(chuàng)建工作的滿意情況,相關(guān)部門(mén)對(duì)某中學(xué)的
100名學(xué)生進(jìn)行調(diào)查,得到如下的統(tǒng)計(jì)表:
 滿意不滿意合計(jì)
男生50  
女生 15 
合計(jì)  100
已知在全部100名學(xué)生中隨機(jī)抽取1人對(duì)創(chuàng)建工作表示滿意的概率為
4
5

(1)利用概率估計(jì)統(tǒng)計(jì)表中的空白處相應(yīng)的數(shù)據(jù),并請(qǐng)?zhí)钤诮y(tǒng)計(jì)表中;
(2)能否有99.5%的把握認(rèn)為該中學(xué)的學(xué)生對(duì)創(chuàng)建工作的滿意情況與性別有關(guān)?
附:
P(K2>k)0.010.050.2250.010.0050.001
k2.7063.8415.0246.6357.87910.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

同步練習(xí)冊(cè)答案