已知向量=(sin,1),=(cos,cos2)
(1)若·=1,求cos(-x)的值;
(2)記f(x)=·,在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足(2a-c)cosB=bcosC,求函數(shù)f(A)的取值范圍.
(1)-.(2) (1,).
解析試題分析:(1)∵·=1,即sincos+cos2=1,
即sin+cos+=1,
∴sin(+)=.
∴cos(-x)=cos(x-)=-cos(x+)=-[1-2sin2(+)]
=2·()2-1=-.
(2)∵(2a-c)cosB=bcosC,
由正弦定理得(2sinA-sinC)cosB=sinBcosC.
∴2sinAcosB-cosBsinC=sinBcosC,
∴2sinAcosB=sin(B+C),
∵A+B+C=π,∴sin(B+C)=sinA,且sinA≠0,
∴cosB=,B=,∴0<A<.
∴<+<<sin(+)<1.
又∵f(x)=·=sin(+)+,
∴f(A)=sin(+)+.
故函數(shù)f(A)的取值范圍是(1,).
考點:本題綜合考查了向量、三角函數(shù)及正余弦定理
點評:三角與向量是近幾年高考的熱門題型,這類題往往是先進行向量運算,再進行三角變換
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),且函數(shù)的圖象相鄰兩條對稱軸之間的距離為.
(Ⅰ)求的對稱中心;
(Ⅱ)當時,求的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
A、B是單位圓O上的動點,且A、B分別在第一、二象限.C是圓O與x軸正半軸的交點,△AOB為正三角形.記∠AOC=α.
(1)若A點的坐標為,求的值;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,扇形,圓心角的大小等于,半徑為,在半徑上有一動點,過點作平行于的直線交弧于點.
(1)若是半徑的中點,求線段的大;
(2)設(shè),求△面積的最大值及此時的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知向量.
(1)求的增區(qū)間;
(2)已知△ ABC內(nèi)接于半徑為6的圓,內(nèi)角A、B、C的對邊分別
為,若,求邊長
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com