20.某公司試銷一種成本單價(jià)為500元/件的新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià),又不高于800元/件.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)x(元/件)可近似看作一次函數(shù)y=kx+b的關(guān)系(如圖所示).
(1)由圖象,求函數(shù)y=kx+b的表達(dá)式;
(2)設(shè)公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷售總價(jià)-成本總價(jià))為S元.試用銷售單價(jià)x表示毛利潤(rùn)S,并求銷售單價(jià)定為多少時(shí),該公司獲得最大毛利潤(rùn)?最大毛利潤(rùn)是多少?此時(shí)的銷售量是多少?

分析 (1)把點(diǎn)(700,300)和點(diǎn)(600,400)分別代入一次函數(shù)y=kx+b,解方程組求得k和b的值,即可得到一次函數(shù)y=kx+b的表達(dá)式.
(2)由題意可得 S=y•x-500y,化簡(jiǎn)可得S=-x2+1500x-500000,利用二次函數(shù)性質(zhì)求出函數(shù)的最大值以及函數(shù)取最大值時(shí)x的值.

解答 解:(1)把點(diǎn)(700,300)和點(diǎn)(600,400)分別代入一次函數(shù)y=kx+b
可得 300=700k+b,且400=600k+b,
解得 k=-1,b=1000,
故一次函數(shù)y=kx+b的表達(dá)式為 y=-x+1000(500≤x≤800). 6分
(2)∵公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷售總價(jià)-成本總價(jià))為S,
則S=y•x-500y=(-x+1000 )x-500(-x+1000)=-x2+1500x-500000.
故函數(shù)S的對(duì)稱軸為x=750,滿足500≤x≤800,故當(dāng)x=750時(shí),函數(shù)S取得最大值為62500元,
即當(dāng)銷售單價(jià)定為750元/價(jià)時(shí),該公司可獲得最大的毛利潤(rùn)為62500元,此時(shí)y=250. 14分.

點(diǎn)評(píng) 本題主要考查用待定系數(shù)法求直線方程,二次函數(shù)性質(zhì)的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在等邊△ABC中,D,E分別是AB,AC邊上的中點(diǎn),那么以B,C為焦點(diǎn)且過(guò)點(diǎn)D,E的雙曲線的離心率是$\sqrt{3}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,已知△ABC中,D為BC的中點(diǎn),AE=$\frac{1}{2}$EC,AD,BE交于點(diǎn)F,設(shè)$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$.
(1)用$\overrightarrow{a}$,$\overrightarrow$分別表示向量$\overrightarrow{AB}$,$\overrightarrow{EB}$;
(2)若$\overrightarrow{AF}$=t$\overrightarrow{AD}$,求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.計(jì)算:($\frac{1}{2}$)-2+log23•log3$\frac{1}{4}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{x-1}{ax}$-lnx(a≠0).
(Ⅰ)當(dāng)a=1時(shí),求f(x)在[$\frac{1}{e}$,e]上的最大值和最小值(其中e是自然對(duì)數(shù)的底數(shù));
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)求證:ln$\frac{{e}^{2}}{x}$≤$\frac{1+x}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.某醫(yī)藥研究所研發(fā)出一種新藥,成年人按規(guī)定的劑量服用后,據(jù)檢測(cè),每毫升血液中的含藥量y(mg)與時(shí)間t(h)之間的關(guān)系如圖所示.據(jù)進(jìn)一步測(cè)定,當(dāng)每毫升血液中的含藥量不少于0.25mg時(shí),治療疾病有效,則服藥一次,治療疾病有效的時(shí)間為( 。
A.4 hB.4$\frac{7}{8}$ hC.4$\frac{15}{16}$ hD.5 h

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知二次函數(shù)f(x)=ax2+bx+c(a,b,c為常數(shù),且a≠0),滿足條件f(0)=0,f(1+x)=f(1-x)恒成立,且方程f(x)=x有兩個(gè)相等的實(shí)數(shù)根.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)是否存在實(shí)數(shù)m,n(m<n),使f(x)的定義域和值域分別是[m,n]和[3m,3n],如果存在,求出m,n的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.解不等式|3x-1|<x+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若向量$\overrightarrow a=({1,0}),\overrightarrow b=({2,1}),\overrightarrow c=({x,1})$滿足$({3\overrightarrow a-\overrightarrow b})⊥\overrightarrow c$,則x=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案