已知tana=3,求下列各式的值.
(1)
3sina-cosa
sina+5cosa

(2)sin2a+11cos2a.
由tana=3,
(1)則
3sina-cosa
sina+5cosa
=
3tanα-1
tanα+5
=
9-1
3+5
=1;
(2)則sin2a+11cos2a=
sin2α+11cos2α
sin2α+cos2α
=
tan2α+11
tan2α+1
=
9+11
9+1
=2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)化簡(jiǎn):
1+2sin20°cos160°
sin160°-
1-sin220°
;
(Ⅱ)已知:tana=3,求
2cos(
π
2
-a)-3sin(
2
+a) 
4cos(-a)+sin(-2π-a)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tana=3,求下列各式的值.
(1)
3sina-cosasina+5cosa

(2)sin2a+11cos2a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tana=
3
,求cosa-sina的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知tana=
3
,求cosa-sina的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案