觀察下列等式:
3
1×2
×
1
2
=1-
1
22
3
1×2
×
1
2
+
4
2×3
×
1
22
=1-
1
22
3
1×2
×
1
2
+
4
2×3
×
1
22
+
5
3×4
×
1
23
=1-
1
23


由以上各式推測第4個(gè)等式為
3
1×2
×
1
2
+
4
2×3
×
1
22
+
5
3×4
×
1
23
+
6
4×5
×
1
24
=1-
1
24
3
1×2
×
1
2
+
4
2×3
×
1
22
+
5
3×4
×
1
23
+
6
4×5
×
1
24
=1-
1
24
分析:題目給出了三個(gè)等式,它們的特點(diǎn)是,第一個(gè)等式左邊僅有一項(xiàng),第二個(gè)等式左邊有兩項(xiàng)作和,第三個(gè)等式左邊有三項(xiàng)作和,第一個(gè)等式左邊的一項(xiàng)是3個(gè)連續(xù)的正的自然數(shù)1、2、3用最大的3除以兩個(gè)小數(shù)的乘積,然后乘以
1
2
,右邊為1-
1
2×2
;第二個(gè)等式的左邊是在第一個(gè)的基礎(chǔ)上加上2、3、4用最大的4除以兩個(gè)小數(shù)的乘積,然后乘以
1
22
,
右邊為1-
1
22
;第三個(gè)等式的左邊是在第二個(gè)的基礎(chǔ)上加上3、4、5用最大的5除以兩個(gè)小數(shù)的乘積,然后乘以
1
23
,右邊為1-
1
23
;由此可以歸納類比第四個(gè)等式.
解答:解:由題目給出的三個(gè)等式的規(guī)律,經(jīng)歸納類比可得,第四個(gè)等式的左邊應(yīng)是在第三個(gè)等式左邊的基礎(chǔ)上加上4、5、6用最大的6除以兩個(gè)小數(shù)的乘積,然后乘以
1
24
,右邊應(yīng)為1-
1
24

所以,由給出的三個(gè)等式推測的第四個(gè)等式為
3
1×2
×
1
2
+
4
2×3
×
1
22
+
5
3×4
×
1
23
+
6
4×5
×
1
24
=1-
1
24

故答案為:
3
1×2
×
1
2
+
4
2×3
×
1
22
+
5
3×4
×
1
23
+
6
4×5
×
1
24
=1-
1
24
點(diǎn)評(píng):本題考查了歸納和類比推理,歸納和類比推理是根據(jù)已有的事實(shí),經(jīng)過觀察、分析、比較、聯(lián)想,再進(jìn)行歸納、類比,然后提出猜想,解答此類問題的關(guān)鍵是對(duì)問題進(jìn)行規(guī)律性的總結(jié),屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列等式:
3
1×2
×
1
2
=1-
1
22
,
3
1×2
×
1
2
+
4
2×3
×
1
22
=1-
1
22
,
3
1×2
×
1
2
+
4
2×3
×
1
22
+
5
3×4
×
1
23
=1-
1
23
,

由以上等式推測到一個(gè)一般的結(jié)論:對(duì)于n∈N*,
3
1×2
×
1
2
+
4
2×3
×
1
22
+…+
n+2
n(n+1)
×
1
2n
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列等式:
3
1×2
×
1
2
=1-
1
22
3
1×2
×
1
2
+
4
2×3
×
1
22
=1-
1
22
3
1×2
×
1
2
+
4
2×3
×
1
22
+
5
3×4
×
1
23
=1-
1
23

由以上各式推測第4個(gè)等式為
3
1×2
×
1
2
+
4
2×3
×
1
22
+
5
3×4
×
1
23
+
6
4×5
×
1
24
=1-
1
26
3
1×2
×
1
2
+
4
2×3
×
1
22
+
5
3×4
×
1
23
+
6
4×5
×
1
24
=1-
1
26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃州區(qū)模擬)觀察下列等式:
3
1×2
×
1
2
=1-
1
22
,
3
1×2
×
1
2
+
4
2×3
×
1
22
=1-
1
3×22
,
3
1×2
×
1
2
+
4
2×3
×
1
22
+
5
3×4
×
1
23
=1-
1
4×23
,…,由以上等式推測到一個(gè)一般結(jié)論為:
3
1×2
×
1
2
+
4
2×3
×
1
22
+
5
3×4
×
1
23
+…+
n+2
n(n+1)2n
×
1
2n
=1-
1
(n+1)2n
(n∈N*
3
1×2
×
1
2
+
4
2×3
×
1
22
+
5
3×4
×
1
23
+…+
n+2
n(n+1)2n
×
1
2n
=1-
1
(n+1)2n
(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列等式:
1=1
1+2=3
1+2+3=6
1+2+3+4=10
1+2+3+4+5=15


13=1
13+23=9
13+23+33=36
13+23+33+43=100
13+23+33+43+53=225

可以推測:13+23+33+…+n3=
1
4
n2(n+1)2
1
4
n2(n+1)2
(n∈N+,用含有n的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案