【題目】已知點(diǎn).若曲線上存在,兩點(diǎn),使為正三角形,則稱型曲線.給定下列三條曲線:

;

其中型曲線的個數(shù)是

A.B.

C.D.

【答案】B

【解析】

對于①,A-1,1)到直線y=-x+3的距離為,若直線上存在兩點(diǎn)B,C,使ABC為正三角形,則|AB|=|AC|=,以A為圓心,以為半徑的圓的方程為(x+12+y-12=6,聯(lián)立
解得,或,后者小于0,所以對應(yīng)的點(diǎn)不在曲線上,所以①不是.
對于②,化為,圖形是第二象限內(nèi)的四分之一圓弧,此時連接A點(diǎn)與圓弧和兩坐標(biāo)軸交點(diǎn)構(gòu)成的三角形頂角最小為135°,所以②不是.
對于③,根據(jù)對稱性,若上存在兩點(diǎn)B、C使ABC構(gòu)成正三角形,則兩點(diǎn)連線的斜率為1,設(shè)BC所在直線方程為x-y+m=0,由題意知A到直線距離為直線被所截弦長的倍,列方程解得m=-,所以曲線③是T型線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是雙曲線上的兩點(diǎn),線段的中點(diǎn)為,直線不經(jīng)過坐標(biāo)原點(diǎn)

1)若直線和直線的斜率都存在且分別為,求證:

2)若雙曲線的焦點(diǎn)分別為、,點(diǎn)的坐標(biāo)為,直線的斜率為,求由四點(diǎn)、、、所圍成四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐SABCD中,SA⊥底面ABCD,底面ABCD是平行四邊形,E是線段SD上一點(diǎn).

1)若ESD的中點(diǎn),求證:SB∥平面ACE;

2)若SAABAD2,SC2,且DEDS,求二面角SACE的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E:過點(diǎn)(0,1)且離心率.

()求橢圓E的方程;

()設(shè)動直線l與兩定直線l1:xy=0l2:x+y=0分別交于P,Q兩點(diǎn).若直線l總與橢圓E有且只有一個公共點(diǎn),試探究:OPQ的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)為曲線上的點(diǎn),,垂足為,若的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直四棱柱的側(cè)棱長為,底面是邊長的矩形,的中點(diǎn),

1)求證:平面,

2)求異面直線所成的角的大小(結(jié)果用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為正整數(shù),若兩個項(xiàng)數(shù)都不小于的數(shù)列,滿足:存在正數(shù),當(dāng)時,都有,則稱數(shù)列,是“接近的”.已知無窮等比數(shù)列滿足,無窮數(shù)列的前項(xiàng)和為,,且,.

1)求數(shù)列通項(xiàng)公式;

2)求證:對任意正整數(shù),數(shù)列是“接近的”;

3)給定正整數(shù),數(shù)列,(其中)是“接近的”,求的最小值,并求出此時的(均用表示).(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)綠色出行,某市在推出共享單車后,又推出新能源分時租賃汽車.其中一款新能源分時租賃汽車,每次租車收費(fèi)的標(biāo)準(zhǔn)由兩部分組成:根據(jù)行駛里程數(shù)按1/公里計費(fèi);行駛時間不超過分時,按/分計費(fèi);超過分時,超出部分按/分計費(fèi).已知王先生家離上班地點(diǎn)公里,每天租用該款汽車上、下班各一次.由于堵車、紅綠燈等因素,每次路上開車花費(fèi)的時間 ()是一個隨機(jī)變量.現(xiàn)統(tǒng)計了次路上開車花費(fèi)時間,在各時間段內(nèi)的頻數(shù)分布情況如下表所示:

時間(分)

頻數(shù)

將各時間段發(fā)生的頻率視為概率,每次路上開車花費(fèi)的時間視為用車時間,范圍為分.(1)寫出王先生一次租車費(fèi)用(元)與用車時間(分)的函數(shù)關(guān)系式;(2)若王先生一次開車時間不超過分為路段暢通”,設(shè)表示3次租用新能源分時租賃汽車中路段暢通的次數(shù),求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),給出以下四個命題:(1)當(dāng)時,單調(diào)遞減且沒有最值;(2)方程一定有實(shí)數(shù)解;(3)如果方程為常數(shù))有解,則解得個數(shù)一定是偶數(shù);(4是偶函數(shù)且有最小值.其中假命題的序號是____________.

查看答案和解析>>

同步練習(xí)冊答案