分析:根據(jù)圖象和圓切線長定理可知:|F1M|=|F1S|,|F2M|=|F2T|,|PS|=|PT|后根據(jù)雙曲線的定義分P在圖象的右支和左支可得
|F1M|-|F2M|=±2a,與|F1M|+|MF2|=|F1F2|=2c聯(lián)立即可求出|F1M|和|MF2|,|F1M|與|F2M|的積再根據(jù)雙曲線的基本性質(zhì)c2-a2=b2化簡得到值.
解答:解:根據(jù)從圓外一點向圓所引的兩條切線長相等可知:|F1M|=|F1S|,|F2M|=|F2T|,|PS|=|PT|
①當P在雙曲線圖象的右支時,而根據(jù)雙曲線的定義可知
|F1M|-|F2M|=|F1P|-|F2P|=2a①;
而|F1M|+|MF2|=|F1F2|=2c②,
聯(lián)立①②解得:|F1M|=a+c,|F2M|=c-a,所以|F1M|•|F2M|=(a+c)(c-a)=c2-a2=b2;
②當P在雙曲線圖象的左支時,而根據(jù)雙曲線的定義可知
|F2M|-|F1M|=|F2P|-|F1P|=2a③;
而|F1M|+|MF2|=|F1F2|=2c④,
聯(lián)立③④解得:|F2M|=a+c,|F1M|=c-a,|F1M|•|F2M|=(a+c)(c-a)=c2-a2=b2.
綜上,可得|F1M|•|F2M|=b2.
故答案為:b2
點評:考查學(xué)生掌握雙曲線的基本性質(zhì),靈活運用圓切線長定理化簡求值.做題時注意利用分類討論的數(shù)學(xué)思想.