(本題滿分14分)
定義在(0,+∞)上的函數(shù),,且處取極值。
(Ⅰ)確定函數(shù)的單調(diào)性。
(Ⅱ)證明:當時,恒有成立.
解:(Ⅰ),則,
由已知,即.                           …………3分
所以,則.由,…………5分  
所以上是增函數(shù),在上是減函數(shù).             …………6分
(Ⅱ) 當時,,要證等價于
,即
設(shè),則.         ……10分   
時,,所以在區(qū)間(1,e2)上為增函數(shù).        ……12分  
從而當時,,即,故……14分。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知函數(shù)
(1)求的導(dǎo)數(shù);
(2)求證:不等式上恒成立;
(3)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分) 設(shè)函數(shù)f (x)=ln x在(0,) 內(nèi)有極值.
(Ⅰ) 求實數(shù)a的取值范圍;
(Ⅱ) 若x1∈(0,1),x2∈(1,+).求證:f (x2)-f (x1)>e+2-
注:e是自然對數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,已知曲線與曲線交于點.直線與曲線分別相交于點.
(Ⅰ)寫出四邊形的面的函數(shù)關(guān)系;
(Ⅱ)討論的單調(diào)性,并求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=1+x-sinx在(0,2π)上是(......)
A.增函數(shù)
B.減函數(shù)
C.在(0,π)上增,在(π,2π)上減
D.在(0,π)上減,在(π,2π)上增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)處的切線方程是 (    )
A.4x+2y+π=0B.4x-2y+π=0C.4x-2y-π=0D.4x+2y-π=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線在點處的切線方程為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

給出一個不等式(x∈R),經(jīng)驗證:當c=1,2,3時,不等式對一切實數(shù)x都成立。試問:當c取任何正數(shù)時,不等式對任何實數(shù)x是否都成立?若能成立,請給出證明;若不成立,請求出c的取值范圍,使不等式對任何實數(shù)x都能成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù) (1)若在區(qū)間上是增函數(shù),求實數(shù)的取值范圍; (2)若的極值點,求上的最大值;(3)在(2)的條件下,是否存在實數(shù),使得函數(shù)的圖像與函數(shù)的圖象恰有3個交點?若存在,請求出實數(shù)的取值范圍;若不存在,試說明理由。

查看答案和解析>>

同步練習(xí)冊答案