圓內(nèi)有一點(diǎn),為過點(diǎn)且傾斜角為的弦.
(1)當(dāng)時(shí),求;
(2)當(dāng)弦被點(diǎn)平分時(shí),求出直線的方程;
(3)設(shè)過點(diǎn)的弦的中點(diǎn)為,求點(diǎn)的坐標(biāo)所滿足的關(guān)系式.
(1);(2);(3).
解析試題分析:(1)通過傾斜角先求出直線的方程,然后利用特征三角形求解;
(2)由題意知直線與直線垂直,故斜率之積為,可通過的斜率求出的斜率,進(jìn)而寫出直線的方程;
(3)通過由、、三點(diǎn)構(gòu)成的直角三角形,利用勾股定理即可求解.
試題解析:(1)過點(diǎn)做于,連結(jié),當(dāng)時(shí),直線的斜率為,故直線的方程,∴,
又∵,∴,∴.
(2)當(dāng)弦被平分時(shí),,此時(shí),
∴的點(diǎn)斜式方程為,即.
(3)設(shè)的中點(diǎn)為,則△為直角三角形,故,
即,整理得.
考點(diǎn):1.弦所在直線方程的求解;2.弦長問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)是直線上一動點(diǎn),是圓C:的兩條切線,A、B是切點(diǎn),若四邊形的最小面積是2,則的值為?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知以點(diǎn)為圓心的圓與直線相切,過點(diǎn)的動直線與圓相交于兩點(diǎn).
(1)求圓的方程;
(2)當(dāng)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知以點(diǎn)C(t∈R,t≠0)為圓心的圓與x軸交于點(diǎn)O、A,與y軸交于點(diǎn)O、B,其中O為原點(diǎn).
(1)求證:△AOB的面積為定值;
(2)設(shè)直線2x+y-4=0與圓C交于點(diǎn)M、N,若|OM|=|ON|,求圓C的方程;
(3)在(2)的條件下,設(shè)P、Q分別是直線l:x+y+2=0和圓C的動點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓.
(1)若圓的切線在軸和軸上的截距相等,且截距不為零,求此切線的方程;
(2)從圓外一點(diǎn)向該圓引一條切線,切點(diǎn)為,為坐標(biāo)原點(diǎn),且有,求使的長取得最小值的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知以點(diǎn)C (t∈R,t≠0)為圓心的圓與x軸交于點(diǎn)O,A,與y軸交于點(diǎn)O,B,其中O為原點(diǎn).
(1)求證:△AOB的面積為定值;
(2)設(shè)直線2x+y-4=0與圓C交于點(diǎn)M,N,若|OM|=|ON|,求圓C的方程;
(3)在(2)的條件下,設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知圓與圓外切于點(diǎn),直線是兩圓的外公切線,分別與兩圓相切于兩點(diǎn),是圓的直徑,過作圓的切線,切點(diǎn)為.
(Ⅰ)求證:三點(diǎn)共線;
(Ⅱ)求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com