在函數(shù)①y=ax(a>0且a≠1)②y=logax(a>0且a≠1)③y=xa中,滿足關(guān)系式f(xy)=f(x)•f(y)的是
 
考點(diǎn):抽象函數(shù)及其應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:抽象函數(shù)關(guān)鍵是利用特殊值,令x=y=1代入f(xy)=f(x)f(y),f(1)=f(1)2,故而求出答案.
解答: 解:令x=y=1代入f(xy)=f(x)f(y)
∴f(1)=f(1)2
∴f(1)=1,或f(1)=-1
而對(duì)于①f(1)=a≠±1,對(duì)于②f(1)=0≠±1,對(duì)于③f(1)=1
所以滿足關(guān)系式f(xy)=f(x)•f(y)的是)③y=xa
故答案為:③.
點(diǎn)評(píng):本題考查抽象函數(shù)的問題,這類題一般都利用特殊值法,先求出幾個(gè)特殊值f(1)等,看似很難其實(shí)比較簡(jiǎn)單,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)(1+x+x2n=a0+a1x+a2x2+…+a2nx2n,那么a2+a4+…+a2n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列1,1,2,3,5,8,13,x,34,55…中的x的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

球O的球面上有三點(diǎn)A,B,C,且BC=3,∠BAC=30°,過(guò)A,B,C三點(diǎn)作球O的截面,球心O到截面的距離為4,則該球的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在(0,+∞)上的函數(shù)f(x)滿足:①當(dāng)x∈[1,3)時(shí),f(x)=1-|x-2|;②f(3x)=3f(x).設(shè)關(guān)于x的函數(shù)F(x)=f(x)-a的零點(diǎn)從小到大依次為x1,x2,…,xn,….若a∈(1,3),則x1+x2+…+x2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=xa滿足f(2)=4,那么函數(shù)g(x)=|loga(x+1)|的圖象大致為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式mx2+mx-4<2x2+2x-1對(duì)任意實(shí)數(shù)x均成立,則實(shí)數(shù)m的取值范圍是( 。
A、(-2,2)
B、(-10,2]
C、(-∞,-2)∪[2,+∞)
D、(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

角θ滿足條件sin2θ>0,且cosθ+sinθ>0,則θ在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列有關(guān)命題:
①命題p:?x∈R,x2+x-1<0,則¬p:?x∈R,使得x2+x-1≥0;
②命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2-3x+2≠0”;
③若
1
a
1
b
<0,則a2>b2;
④如果命題“¬(p∨q)”為假命題,則p,q中至少有一個(gè)為真命題.
其中錯(cuò)誤命題的個(gè)數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案