一無(wú)窮等比數(shù)列的公比|q|<1,首項(xiàng)為1,且每一項(xiàng)都為它后面各項(xiàng)和的k倍,則k的范圍是(    )

A.k≥0

B.k2

C.k>0k<2

D.2<k<0

 

答案:C
提示:

利用無(wú)窮等比數(shù)列求和極限性質(zhì)。

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一無(wú)窮等比數(shù)列{an}的各項(xiàng)和為
3
2
,第二項(xiàng)為
1
3
,則該數(shù)列的公比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:013

一無(wú)窮等比數(shù)列的公比|q|<1,首項(xiàng)為1,且每一項(xiàng)都為它后面各項(xiàng)和的k倍,則k的范圍是(    )

A.k≥0

B.k2

C.k>0k<2

D.2<k<0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年雅禮中學(xué)月考理)(13分)

定義:將一個(gè)數(shù)列中部分項(xiàng)按原來(lái)的先后次序排列所成的一個(gè)新數(shù)列稱為原數(shù)列的一個(gè)子數(shù)列.已知無(wú)窮等比數(shù)列的首項(xiàng)和公比均為

   (1)試求無(wú)窮等比子數(shù)列)各項(xiàng)的和;

   (2)已知數(shù)列的一個(gè)無(wú)窮等比子數(shù)列各項(xiàng)的和為,求這個(gè)子數(shù)列的通項(xiàng)公式;

   (3)證明:在數(shù)列的所有子數(shù)列中,不存在兩個(gè)不同的無(wú)窮等比子數(shù)列,使得它們各項(xiàng)的和相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市徐匯區(qū)高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.

(理)對(duì)于數(shù)列,從中選取若干項(xiàng),不改變它們?cè)谠瓉?lái)數(shù)列中的先后次序,得到的數(shù)列稱為是原來(lái)數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為正整數(shù),公比為正整數(shù)的無(wú)窮等比數(shù)列的子數(shù)列問(wèn)題. 為此,他任取了其中三項(xiàng).

(1) 若成等比數(shù)列,求之間滿足的等量關(guān)系;

(2) 他猜想:“在上述數(shù)列中存在一個(gè)子數(shù)列是等差數(shù)列”,為此,他研究了的大小關(guān)系,請(qǐng)你根據(jù)該同學(xué)的研究結(jié)果來(lái)判斷上述猜想是否正確;

(3) 他又想:在首項(xiàng)為正整數(shù),公差為正整數(shù)的無(wú)窮等差數(shù)列中是否存在成等比數(shù)列的子數(shù)列?請(qǐng)你就此問(wèn)題寫出一個(gè)正確命題,并加以證明.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案