設(shè)三棱錐P-ABC的頂點(diǎn)P在平面ABC上的射影是H,給出以下命題:
①若PA⊥BC,PB⊥AC,則H是△ABC的垂心
②若PA、PB、PC兩兩互相垂直,則H是△ABC的垂心
③若∠ABC=90°,H是AC的中點(diǎn),則PA=PB=PC
④若PA=PB=PC,則H是△ABC的外心
其中正確命題的命題是________                
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(本小題滿分12分)
如圖,四棱錐S-ABCD中,,側(cè)面SAB為等邊三角形,
AB=BC=2,CD="SD=1.                                 "
(Ⅰ)證明:;
(Ⅱ)求AB與平面SBC所成的角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在三棱錐P-ABC中,PA⊥平面ABC,AB=BC=CA=3,M為AB的中點(diǎn),四點(diǎn)P、A、M、C都在球O的球面上.

(1)證明:平面PAB⊥平面PCM;
(2)證明:線段PC的中點(diǎn)為球O的球心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知平面平面,直線平面,點(diǎn)直線,平面與平面間的距離
為8,則在平面內(nèi)到點(diǎn)的距離為10,且到直線的距離為9的點(diǎn)的軌跡是 (   )
A 一個圓           B 四個點(diǎn)           C 兩條直線         D 兩個點(diǎn)
第Ⅱ卷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用一個平面去截一個幾何體,得到的截面是圓面,這個幾何體不可能是
A.圓錐B.圓柱C.球D.棱柱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方形的棱長為1,C、D分別是兩條棱的中點(diǎn),A、B、

B

 
M是頂點(diǎn),那么M到截面ABCD的距離是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知三棱錐P—ABC的側(cè)棱PA、PB、PC兩兩垂直,下列結(jié)論正確的
有__________________.(寫出所有正確結(jié)論的編號)
;
②頂點(diǎn)P在底面上的射影是△ABC的垂心;
③△ABC可能是鈍角三角形;
④此三棱錐的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在長方體ABCD-A1B1C1D1中,經(jīng)過其對角線BD1的平面分別與棱AA1、CC1相交于E,F(xiàn)兩點(diǎn),則四邊形EBFD1的形狀為_______                

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)棱錐的底面是正方形,且,的面積為,則能夠放入這個棱錐的最大球的半徑為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案