【題目】下列命題中正確的命題個(gè)數(shù)是 ( )
①. 如果共面, 也共面,則共面;
②.已知直線a的方向向量與平面,若// ,則直線a// ;
③若共面,則存在唯一實(shí)數(shù)使,反之也成立;
④.對(duì)空間任意點(diǎn)O與不共線的三點(diǎn)A、B、C,若=x+y+z
(其中x、y、z∈R),則P、A、B、C四點(diǎn)共面
A. 3 B. 2 C. 1 D. 0
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.
(1)請(qǐng)按字母F、G、H標(biāo)記在正方體相應(yīng)地頂點(diǎn)處(不需要說(shuō)明理由);
(2)判斷平面BEG與平面ACH的位置關(guān)系.并說(shuō)明你的結(jié)論;
(3)證明:直線DF⊥平面BEG.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn+an=4,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知cn=2n+3(n∈N*),記dn=cn+logCan(C>0,C≠1),是否存在這樣的常數(shù)C,使得數(shù)列{dn}是常數(shù)列,若存在,求出C的值;若不存在,請(qǐng)說(shuō)明理由.
(3)若數(shù)列{bn},對(duì)于任意的正整數(shù)n,均有 成立,求證:數(shù)列{bn}是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,底面是邊長(zhǎng)為的菱形, ,四邊形是矩形,平面平面, , 是的中點(diǎn).
(1)求證: 平面;
(2)求直線與平面所成角的正弦值;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品一年內(nèi)出廠價(jià)格在6元的基礎(chǔ)上按月份隨正弦曲線波動(dòng),已知3月份達(dá)到最高價(jià)格8元,7月份價(jià)格最低為4元,該商品在商店內(nèi)的銷售價(jià)格在8元基礎(chǔ)上按月份隨正弦曲線波動(dòng),5月份銷售價(jià)格最高為10元,9月份銷售價(jià)最低為6元,假設(shè)商店每月購(gòu)進(jìn)這種商品m件,且當(dāng)月銷完,你估計(jì)哪個(gè)月份盈利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校有線網(wǎng)絡(luò)同時(shí)提供A、B兩套校本選修課程。A套選修課播40分鐘,課后研討20分鐘,可獲得學(xué)分5分B套選修課播32分鐘,課后研討40分鐘,可獲學(xué)分4分。全學(xué)期20周,網(wǎng)絡(luò)每周開播兩次,每次均為獨(dú)立內(nèi)容。學(xué)校規(guī)定學(xué)生每學(xué)期收看選修課不超過(guò)1400分鐘,研討時(shí)間不得少于1000分鐘。兩套選修課怎樣合理選擇,才能獲得最好學(xué)分成績(jī)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,上海迪士尼樂(lè)園將一三角形地塊ABC的一角APQ開辟為游客體驗(yàn)活動(dòng)區(qū).已知∠A=120°,AB、AC的長(zhǎng)度均大于200米.設(shè)AP=x,AQ=y,且AP,AQ總長(zhǎng)度為200米.
(1)當(dāng)x,y為何值時(shí)?游客體驗(yàn)活動(dòng)區(qū)APQ的面積最大,并求最大面積;
(2)當(dāng)x,y為何值時(shí)?線段|PQ|最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖象在點(diǎn)處的切線的傾斜角為45°,對(duì)于任意的,函數(shù)在區(qū)間上總不是單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某幾何體的三視圖如圖所示,且該幾何體的體積是3,則正視圖的的值__________.
【答案】3
【解析】 由已知中的三視圖可得該幾何體是一個(gè)以直角梯形為底面,梯形上下邊長(zhǎng)為和,高為,
如圖所示, 平面,
所以底面積為,
幾何體的高為,所以其體積為.
點(diǎn)睛:在由三視圖還原為空間幾何體的實(shí)際形狀時(shí),要從三個(gè)視圖綜合考慮,根據(jù)三視圖的規(guī)則,空間幾何體的可見(jiàn)輪廓線在三視圖中為實(shí)線,不可見(jiàn)輪廓線在三視圖中為虛線.在還原空間幾何體實(shí)際形狀時(shí),一般是以正視圖和俯視圖為主,結(jié)合側(cè)視圖進(jìn)行綜合考慮.求解以三視圖為載體的空間幾何體的體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)體積公式求解.
【題型】填空題
【結(jié)束】
16
【題目】已知橢圓: 的右焦點(diǎn)為, 為直線上一點(diǎn),線段交于點(diǎn),若,則__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com