(2012•豐臺(tái)區(qū)一模)已知等比數(shù)列{an}的首項(xiàng)為1,若4a1,2a2,a3成等差數(shù)列,則數(shù)列{
1
an
}的前5項(xiàng)和為
31
16
31
16
分析:由4a1,2a2,a3成等差數(shù)列,利用等差數(shù)列的性質(zhì),求出數(shù)列的公比,從而得到數(shù)列的項(xiàng),由此可得結(jié)論.
解答:解:設(shè)等比數(shù)列{an}的公比為q,則
∵4a1,2a2,a3成等差數(shù)列
∴2a2-4a1=a3-2a2
∴2q-4=q2-2q,
∴q2-4q+4=0,
∴q=2,
∴a1=1,a2=2,a3=4,a4=8,a5=16,
∴數(shù)列{
1
an
}的前5項(xiàng)和為1+
1
2
+
1
4
+
1
8
+
1
16
=
31
16

故答案為:
31
16
點(diǎn)評(píng):本題考查數(shù)列的應(yīng)用,解題時(shí)確定數(shù)列的公比是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•豐臺(tái)區(qū)一模)已知函數(shù)f(x)=ax2-(a+2)x+lnx.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)當(dāng)a>0時(shí),函數(shù)f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍;
(Ⅲ)若對(duì)任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•豐臺(tái)區(qū)一模)某班共有學(xué)生40人,將一次數(shù)學(xué)考試成績(jī)(單位:分)繪制成頻率分布直方圖,如圖所示.
(Ⅰ)請(qǐng)根據(jù)圖中所給數(shù)據(jù),求出a的值;
(Ⅱ)從成績(jī)?cè)赱50,70)內(nèi)的學(xué)生中隨機(jī)選3名學(xué)生,求這3名學(xué)生的成績(jī)都在[60,70)內(nèi)的概率;
(Ⅲ)為了了解學(xué)生本次考試的失分情況,從成績(jī)?cè)赱50,70)內(nèi)的學(xué)生中隨機(jī)選取3人的成績(jī)進(jìn)行分析,用X表示所選學(xué)生成績(jī)?cè)赱60,70)內(nèi)的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•豐臺(tái)區(qū)一模)已知向量
a
=(sinθ,cosθ)
,
b
=(3,4)
,若
a
b
,則tan2θ等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•豐臺(tái)區(qū)一模)設(shè)a=0.64.2,b=70.6,c=log0.67,則a,b,c的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•豐臺(tái)區(qū)一模)已知定義在R上的函數(shù)y=f(x)滿足f(x+2)=f(x),當(dāng)-1<x≤1時(shí),f(x)=x3.若函數(shù)g(x)=f(x)-loga|x|至少有6個(gè)零點(diǎn),則a的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案