【題目】曲線(xiàn)C:ρ2﹣2ρcosθ﹣8=0 曲線(xiàn)E: (t是參數(shù))
(1)求曲線(xiàn)C的普通方程,并指出它是什么曲線(xiàn).
(2)當(dāng)k變化時(shí)指出曲線(xiàn)K是什么曲線(xiàn)以及它恒過(guò)的定點(diǎn)并求曲線(xiàn)E截曲線(xiàn)C所得弦長(zhǎng)的最小值.
【答案】
(1)解:∵曲線(xiàn)C:ρ2﹣2ρcosθ﹣8=0,
∴x2+y2﹣2x﹣8=0,
∴(x﹣1)2+y2=9,
表示圓心(1,0)半徑為3的圓
(2)解:曲線(xiàn)E: 消去參數(shù)得y﹣1=k(x﹣2)m是一條恒過(guò)定點(diǎn)(2,1)的直線(xiàn)(但不包括x=2),當(dāng)直線(xiàn)E與圓心連線(xiàn)垂直時(shí)弦長(zhǎng)最小,
設(shè)圓心到直線(xiàn)E的距離為d,則d= ,所以弦長(zhǎng)的最小值=2 =2
【解析】1、根據(jù)極坐標(biāo)與直角坐標(biāo)的公式轉(zhuǎn)化可得x2+y2﹣2x﹣8=0,整理可得(x﹣1)2+y2=9。
2、首先消去參數(shù)可得,y﹣1=k(x﹣2)m是一條恒過(guò)定點(diǎn)(2,1)的直線(xiàn),由題意可知當(dāng)直線(xiàn)E與圓心連線(xiàn)垂直時(shí)弦長(zhǎng)最小,利用圓的半徑、弦長(zhǎng)的一半、圓心到直線(xiàn)的距離構(gòu)成的直角三角形可求出弦長(zhǎng)的值。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地政府調(diào)查了工薪階層1000人的月工資收入,并根據(jù)調(diào)查結(jié)果畫(huà)出如圖所示的頻率分布直方圖,其中工資收入分組區(qū)間是[10,15),[15,20),[20,25),[25,30)[30,35),[35,40](單位:百元)
(Ⅰ)為了了解工薪階層對(duì)工資收入的滿(mǎn)意程度,要用分層抽樣的方法從調(diào)查的1000人中抽取100人做電話(huà)詢(xún)問(wèn),求月工資收入在[30,35)內(nèi)應(yīng)抽取的人數(shù);
(Ⅱ)根據(jù)頻率分布直方圖估計(jì)這1000人的平均月工資為多少元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若不等式2xlnx≥﹣x2+ax﹣3對(duì)x∈(0,+∞)恒成立,則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞,0)
B.(0,+∞)
C.(﹣∞,4]
D.[4,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二面角α﹣l﹣β為60°,ABα,AB⊥l,A為垂足,CDβ,C∈l,∠ACD=135°,則異面直線(xiàn)AB與CD所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于空間直角坐標(biāo)系O﹣xyz中的一點(diǎn)P(1,2,3),有下列說(shuō)法:
①點(diǎn)P到坐標(biāo)原點(diǎn)的距離為 ;
②OP的中點(diǎn)坐標(biāo)為( );
③點(diǎn)P關(guān)于x軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為(﹣1,﹣2,﹣3);
④點(diǎn)P關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為(1,2,﹣3);
⑤點(diǎn)P關(guān)于坐標(biāo)平面xOy對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為(1,2,﹣3).
其中正確的個(gè)數(shù)是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知長(zhǎng)方形ABCD中,AB=2 ,AD= ,M為DC的中點(diǎn).將△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求證:AD⊥BM;
(2)若點(diǎn)E是線(xiàn)段DB上的一動(dòng)點(diǎn),問(wèn)點(diǎn)E在何位置時(shí),二面角E﹣AM﹣D的余弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f (x)的導(dǎo)函數(shù)為f′(x),對(duì)任意x∈R都有f (x)>f′(x)成立,則( )
A.3f (ln2)<2 f (ln3)
B.3 f (ln2)=2 f (ln3)
C.3 f(ln2)>2 f (ln3)
D.3 f (ln2)與2 f (ln3)的大小不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列三個(gè)命題: ①若一個(gè)球的半徑縮小到原來(lái)的 ,則其體積縮小到原來(lái)的 ;
②若兩組數(shù)據(jù)的平均數(shù)相等,則它們的標(biāo)準(zhǔn)差也相等;
③直線(xiàn)x+y+1=0與圓x2+y2= 相切.
其中真命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列五個(gè)命題:
①函數(shù) 的一條對(duì)稱(chēng)軸是x= ;
②函數(shù)y=tanx的圖象關(guān)于點(diǎn)( ,0)對(duì)稱(chēng);
③正弦函數(shù)在第一象限為增函數(shù);
④若 ,則x1﹣x2=kπ,其中k∈Z;
⑤函數(shù)f(x)=sinx+2|sinx|,x∈[0,2π]的圖象與直線(xiàn)y=k有且僅有兩個(gè)不同的交點(diǎn),則k的取值范圍為(1,3).
以上五個(gè)命題中正確的有(填寫(xiě)所有正確命題的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com