【題目】在單位正方體 中,O是 的中點(diǎn),如圖建立空間直角坐標(biāo)系.
(1)求證 ∥平面 ;
(2)求異面直線與OD夾角的余弦值;
【答案】(1)見解析(2)
【解析】試題分析:
(1)由 ,結(jié)合線面平行的判斷定理即可證得結(jié)論;
(2)利用空間直角坐標(biāo)系可得異面直線夾角的余弦值為 .
試題解析:
(1)解法一:連接A1D則∥A1D.
而A1D平面, 平面
所以∥平面.
解法二:設(shè)平面的一個(gè)法向量為,
由 得,令,則
所以. 又.從而
所以∥平面.
解:(2)法一:由(1)知異面直線與的夾角為或其補(bǔ)角.
而且O為中點(diǎn),故,
所以兩異面直線與的夾角的余弦值為.
法二:設(shè)、分別為直線與的方向向量,
則由,得cos< , >= .
所以兩異面直線與的夾角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)預(yù)計(jì)從2015年初開始的第月,商品的價(jià)格(, ,價(jià)格單位:元),且第月該商品的銷售量(單位:萬件).
(1)商品在2015年的最低價(jià)格是多少?
(2)2015年的哪一個(gè)月的銷售收入最少,最少是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高三年級(jí)有3名男生和1名女生為了報(bào)某所大學(xué),事先進(jìn)行了多方詳細(xì)咨詢,并根據(jù)自己的高考成績(jī)情況,最終估計(jì)這3名男生報(bào)此所大學(xué)的概率都是,這1名女生報(bào)此所大學(xué)的概率是.且這4人報(bào)此所大學(xué)互不影響。
(Ⅰ)求上述4名學(xué)生中報(bào)這所大學(xué)的人數(shù)中男生和女生人數(shù)相等的概率;
(Ⅱ)在報(bào)考某所大學(xué)的上述4名學(xué)生中,記為報(bào)這所大學(xué)的男生和女生人數(shù)的和,試求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對(duì)100名高一新生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計(jì) | |
男生 | 10 | ||
女生 | 20 | ||
合計(jì) |
已知在這100人中隨機(jī)抽取1人抽到喜歡游泳的學(xué)生的概率為.
(1)請(qǐng)將上述列聯(lián)表補(bǔ)充完整:并判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由;
(2)針對(duì)于問卷調(diào)查的100名學(xué)生,學(xué)校決定從喜歡游泳的人中按分層抽樣的方法隨機(jī)抽取6人成立游泳科普知識(shí)宣傳組,并在這6人中任選2人作為宣傳組的組長(zhǎng),設(shè)這兩人中男生人數(shù)為,求的分布列和數(shù)學(xué)期望.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ;
(1)若f(x)的定義域?yàn)?/span> (-∞,+∞), 求實(shí)數(shù)a的范圍;
(2)若f(x)的值域?yàn)?/span> [0, +∞), 求實(shí)數(shù)a的范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明和爸爸周末到濕地公園進(jìn)行鍛煉,兩人上午9:00從公園入口出發(fā),沿相同路線勻速運(yùn)動(dòng),小明15分鐘后到達(dá)目的地,此時(shí)爸爸離出發(fā)地的路程為1200米,小明到達(dá)目的地后立即按原路勻速返回,與爸爸相遇后,和爸爸一起從原路返回出發(fā)地.小明、爸爸在鍛煉過程中離出發(fā)地的路程與小明出發(fā)的時(shí)間的函數(shù)關(guān)系如圖.
(1)圖中________, _______;
(2)求小明和爸爸相遇的時(shí)刻.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某村積極開展“美麗鄉(xiāng)村生態(tài)家園”建設(shè),現(xiàn)擬在邊長(zhǎng)為1千米的正方形地塊ABCD上劃出一片三角形地塊CMN建設(shè)美麗鄉(xiāng)村生態(tài)公園,給村民休閑健身提供去處.點(diǎn)M,N分別在邊AB,AD上. (Ⅰ)當(dāng)點(diǎn)M,N分別是邊AB,AD的中點(diǎn)時(shí),求∠MCN的余弦值;
(Ⅱ)由于村建規(guī)劃及保護(hù)生態(tài)環(huán)境的需要,要求△AMN的周長(zhǎng)為2千米,請(qǐng)?zhí)骄俊螹CN是否為定值,若是,求出此定值,若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓,動(dòng)圓與圓外切并與圓內(nèi)切,圓心的軌跡為曲線.
(1)求的方程;
(2)是與圓,圓都相切的一條直線,與曲線交于兩點(diǎn),當(dāng)圓的半徑最長(zhǎng)時(shí),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的正方形中隨機(jī)投擲10 000個(gè)點(diǎn),則落入陰影部分(曲線C為正態(tài)分布
N(-1,1)的部分密度曲線)的點(diǎn)的個(gè)數(shù)的估計(jì)值為
附:若X~N(μ,σ2),則P(μ-σ<X<μ+σ)=0.682 6,P(μ-2σ<X<μ+2σ)=0.954 4.
A. 1 193 B. 1 359 C. 2 718 D. 3 413
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com