【題目】小明和爸爸周末到濕地公園進行鍛煉,兩人上午9:00從公園入口出發(fā),沿相同路線勻速運動,小明15分鐘后到達目的地,此時爸爸離出發(fā)地的路程為1200米,小明到達目的地后立即按原路勻速返回,與爸爸相遇后,和爸爸一起從原路返回出發(fā)地.小明、爸爸在鍛煉過程中離出發(fā)地的路程與小明出發(fā)的時間的函數(shù)關系如圖.

(1)圖中________ _______;

(2)求小明和爸爸相遇的時刻.

【答案】 (1), (2)9:25

【解析】試題分析:(1)根據(jù)圖象可判斷出小明到達山頂?shù)臅r間,爸爸距離山腳下的路程.
(2)由圖象可以得出爸爸上山的速度和小明下山的速度,再求出小明從下山到與爸爸相遇用的時間,即得結果

試題解析:

(1)由圖像可以看出圖中, .

(2)設:小明從返程到與爸爸相遇經過分鐘.

由圖像可以得出爸爸與小明相遇前的速度是: (米/分)

小明返程的速度是: (米/分)

,∴

∴小明從出發(fā)到與爸爸相遇經過分鐘

∴小明和爸爸相遇的時間是9:25

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中實數(shù)

(1)若,求函數(shù)上的最值;

(2)若,討論函數(shù)的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,角所對的邊分別為,且

(1)求的值;

(2)若,求的面積的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的短軸長為,離心率

(1)求橢圓的標準方程;

(2)若分別是橢圓的左、右焦點,過的直線與橢圓交于不同的兩點,求的內切圓半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在單位正方體 中,O 的中點,如圖建立空間直角坐標系.

(1)求證 ∥平面 ;

(2)求異面直線OD夾角的余弦值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將一塊圓心角為120°,半徑為20cm的扇形鋼片裁出一塊矩形鋼片,如圖有兩種裁法:使矩形一邊在扇形的一條半徑OA上,或者讓矩形一邊與弦AB平行,試問哪種裁法能使截得的矩形鋼片面積最大?并求出這個最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn,,Snn2ann(n-1),n=1,2,…

(1)證明:數(shù)列{Sn}是等差數(shù)列,并求Sn;

(2)設,求證 :b1b2+…+bn<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R,都有f(x+2)=f(x).當0≤x≤1時,f(x)=x2.若直線y=x+a與函數(shù)y=f(x)的圖象有兩個不同的公共點,則實數(shù)a的值為( 。

A. n(n∈Z) B. 2n(n∈Z)

C. 2n或(n∈Z) D. n或(n∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的平面圖形中,ABCD是邊長為2的正方形,△HDA和△GDC都是以D為直角頂點的等腰直角三角形,點E是線段GC的中點.現(xiàn)將△HDA和△GDC分別沿著DADC翻折,直到點HG重合為點P.連接PB,得如圖的四棱錐.

(Ⅰ)求證:PA//平面EBD;

(Ⅱ)求二面角大。

查看答案和解析>>

同步練習冊答案