【題目】已知函數(shù)
(1)當 時,設,討論的導函數(shù)的單調性;
(2)當時,,求的取值范圍.
【答案】(1)上單調遞減,上單調遞增;(2)
【解析】
(1)當時,,對導函數(shù)再次求導,轉化成解一次不等式,從而得到的單調區(qū)間;
(2)由第(1)步的思路,構造函數(shù),對函數(shù)進行求導后,再次求導得到,對分成和兩種情況進行討論,先研究的單調性與函數(shù)值的正負,再研究的單調性與函數(shù)值的正負.
(1)當時,,
,
,當,當,
所以在上單調遞減,在上單調遞增.
(2)當時,,令,
,
,
當,
①當時,在恒成立,
所以在上單調遞增,且,
所以在恒成立,
所以在上單調遞增,且,
所以在恒成立,
所以當時,不等式成立.
②當時,
當,當,
所以在上單調遞減,且,
所以在上恒成立,
所以在上單調遞減,且,
所以在上恒成立,這與相矛盾,
所以不成立.
綜上所述:.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象在處的切線方程為.
(1)討論函數(shù)的單調性.
(2)是否存在正實數(shù),使得函數(shù)的定義域為時,值域也為?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為滿足人們的閱讀需求,圖書館設立了無人值守的自助閱讀區(qū),提倡人們在閱讀后將圖書分類放回相應區(qū)域.現(xiàn)隨機抽取了某閱讀區(qū)500本圖書的分類歸還情況,數(shù)據(jù)統(tǒng)計如下(單位:本).
文學類專欄 | 科普類專欄 | 其他類專欄 | |
文學類圖書 | 100 | 40 | 10 |
科普類圖書 | 30 | 200 | 30 |
其他圖書 | 20 | 10 | 60 |
(1)根據(jù)統(tǒng)計數(shù)據(jù)估計文學類圖書分類正確的概率;
(2)根據(jù)統(tǒng)計數(shù)據(jù)估計圖書分類錯誤的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,函數(shù)(是自然對數(shù)的底數(shù)).
(Ⅰ)若,證明:曲線沒有經過點的切線;
(Ⅱ)若函數(shù)在其定義域上不單調,求的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸,取相同長度單位建立極坐標系,直線的極坐標方程為.
(Ⅰ)求曲線和直線的直角坐標方程;
(Ⅱ)直線與軸交點為,經過點的直線與曲線交于,兩點,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某公司生產線生產的某種產品中抽取1000件,測量這些產品的一項質量指標,由檢測結果得如圖所示的頻率分布直方圖:
(1)求這1000件產品質量指標的樣本平均數(shù)和樣本方差 (同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)由直方圖可以認為,這種產品的質量指標值服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差.
(i)利用該正態(tài)分布,求;
(ⅱ)已知每件該產品的生產成本為10元,每件合格品(質量指標值)的定價為16元;若為次品(質量指標值),除了全額退款外且每件次品還須賠付客戶48元.若該公司賣出10件這種產品,記表示這件產品的利潤,求.
附:,若,則.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種規(guī)格的矩形瓷磚根據(jù)長期檢測結果,各廠生產的每片瓷磚質量都服從正態(tài)分布,并把質量在之外的瓷磚作為廢品直接回爐處理,剩下的稱為正品.
(Ⅰ)從甲陶瓷廠生產的該規(guī)格瓷磚中抽取10片進行檢查,求至少有1片是廢品的概率;
(Ⅱ)若規(guī)定該規(guī)格的每片正品瓷磚的“尺寸誤差”計算方式為:設矩形瓷磚的長與寬分別為、,則“尺寸誤差”為,按行業(yè)生產標準,其中“優(yōu)等”、“一級”、“合格”瓷磚的“尺寸誤差”范圍分別是,、,、,(正品瓷磚中沒有“尺寸誤差”大于的瓷磚),每片價格分別為7.5元、6.5元、5.0元.現(xiàn)分別從甲、乙兩廠生產的該規(guī)格的正品瓷磚中隨機抽取100片瓷磚,相應的“尺寸誤差”組成的樣本數(shù)據(jù)如下:
尺寸誤差 | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 |
頻數(shù) | 10 | 30 | 30 | 5 | 10 | 5 | 10 |
(甲廠瓷磚的“尺寸誤差”頻數(shù)表)用這個樣本的頻率分布估計總體分布,將頻率視為概率.
(。┯浖讖S該種規(guī)格的2片正品瓷磚賣出的錢數(shù)為(元,求的分布列及數(shù)學期望.
(ⅱ)由如圖可知,乙廠生產的該規(guī)格的正品瓷磚只有“優(yōu)等”、“一級”兩種,求5片該規(guī)格的正品瓷磚賣出的錢數(shù)不少于36元的概率.
附:若隨機變量服從正態(tài)分布,則;,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為;直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于,兩點.
(1)寫出曲線的直角坐標方程和直線的普通方程;
(2)若點的極坐標為,,求的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com