【題目】已知直線:和二次函數(shù),若直線與二次函數(shù)的圖象交于,兩點.
(1)求直線在軸上的截距;
(2)若點的坐標(biāo)為,求點的坐標(biāo);
(3)當(dāng)時,是否存在直線與圓:相切?若存在,求線段的長;若不存在,說明理由.
【答案】(1);(2);(3)存在直線或與圓相切,但不存在弦長.
【解析】
(1)根據(jù)截距的定義,令,解得即為所求;
(2)先求得,再聯(lián)立方程求得點坐標(biāo);
(3)根據(jù)直線與圓相切求得方程,再聯(lián)立方程組求出坐標(biāo),則問題得解.
(1)因為直線:,
令,解得,
故直線在軸上的截距;
(2)因為點的坐標(biāo)為,
故可得,解得.
聯(lián)立,
可得,解得或,
故或,
則點坐標(biāo)為.
(3)假設(shè)存在直線與圓:相切
又圓心為,半徑,
故可得,解得或.
則此時直線為或.
顯然直線與沒有交點;
聯(lián)立與,
可得,
,
故直線與二次函數(shù)沒有交點.
綜上所述:存在直線或與圓相切,但不存在弦長.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年“雙節(jié)”期間,高速公路車輛較多.某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們在某段高速公路的車速分成六段: , , , , , 后得到如圖的頻率分布直方圖.
(1)調(diào)查公司在采樣中,用到的是什么抽樣方法?
(2)求這40輛小型車輛車速的眾數(shù)、中位數(shù)及平均數(shù)的估計值;
(3)若從車速在的車輛中任抽取2輛,求車速在的車輛至少有一輛的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中心接到其正東、正西、正北方向三個觀測點的報告:正西、正北兩個觀測點同時聽到了一聲巨響,正東觀測點聽到的時間比其它兩觀測點晚4.已知各觀測點到該中心的距離是1020.則該巨響發(fā)生在接報中心的( )處.(假定當(dāng)時聲音傳播的速度為340,相關(guān)各點均在同一平面上)
A. 西偏北方向,距離 B. 東偏南方向,距離
C. 西偏北方向,距離 D. 東偏南方向,距離
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一張坐標(biāo)紙上一已作出圓及點,折疊此紙片,使與圓周上某點重合,每次折疊都會留下折痕,設(shè)折痕與直線的交點為,令點的軌跡為.
(1)求軌跡的方程;
(2)若直線與軌跡交于兩個不同的點,且直線與以為直徑的圓相切,若,求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下五個關(guān)于圓錐曲線的命題中:
①平面內(nèi)與定點A(-3,0)和B(3,0)的距離之差等于4的點的軌跡為;
②點P是拋物線上的動點,點P在y軸上的射影是M點A的坐標(biāo)是A(3,6),則的最小值是6;
③平面內(nèi)到兩定點距離之比等于常數(shù)的點的軌跡是圓;
④若過點C(1,1)的直線交橢圓于不同的兩點A,B,且C是AB的中點,則直線的方程是.
⑤已知P為拋物線上一個動點,Q為圓上一個動點,那么點P到點Q的距離與點P到拋物線的準(zhǔn)線距離之和的最小值是
其中真命題的序號是______.(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市的電視發(fā)射搭CD建在市郊的一座小山上,如圖所示,小山高BC為30米,在地平面上有一點A,測得A,C兩點間距離為50米.
(1)如果從點A觀測電視發(fā)射塔的視角∠CAD=,求這座電視發(fā)射塔的高度;
(2)點A在何位置時,角∠CAD最大.(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)參加語、數(shù)、外三門課程的考試,設(shè)該同學(xué)語、數(shù)、外取得優(yōu)秀成績的概率分別為, , (),設(shè)該同學(xué)三門課程都取得優(yōu)秀成績的概率為,都未取得優(yōu)秀成績的概率為,且不同課程是否取得優(yōu)秀成績相互獨立.
(1)求, ;
(2)設(shè)為該同學(xué)取得優(yōu)秀成績的課程門數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)在平面直角坐標(biāo)系中,將曲線的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,得到曲線,過點作直線,交曲線于兩點,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是 (為參數(shù)),以原點為極點, 軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;
(Ⅱ)已知直線與曲線交于, 兩點,與軸交于點,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com