如圖,在四棱錐中,平面平面,,,,是中點(diǎn),是中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求三棱錐的體積.
(1)根據(jù)線面平行的判定定理來得到證明,關(guān)鍵是證明CE//DF
(2)
解析試題分析:(1)證明:取PA中點(diǎn)F,連EF,F(xiàn)D
∵E為PB中點(diǎn) 故EFAB 又DCAB
∴EFDC CEFD為平行四邊形
CE//DF DF平面PAD,CE平面PAD
∴CE//平面PAD 6分
(II) ABCD為直角梯形,AB=2a,CD="BC=" a
∴
PA=PD H為AD中點(diǎn)故 PH⊥AD
平面PAD⊥平面ABCD ∴PH⊥平面ABCD
E為PB中點(diǎn),故E到平面BCD距離為
12分
考點(diǎn):錐體的體積,線面平行
點(diǎn)評:主要是考查了棱錐中的性質(zhì)以及體積公式和線面平行的證明。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,菱形的邊長為6,,.將菱形沿對角線折起,得到三棱錐 ,點(diǎn)是棱的中點(diǎn),.
(1)求證:;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖是一個(gè)直三棱柱(以A1B1C1為底面)被一平面
所截得到的幾何體,截面為ABC.已知A1B1=B1C1=l,∠AlBlC1=90°,
AAl=4,BBl=2,CCl=3,且設(shè)點(diǎn)O是AB的中點(diǎn)。
(1)證明:OC∥平面A1B1C1;
(2)求異面直線OC與AlBl所成角的正切值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在多面體中,四邊形是邊長為2的正方形,平面平面,平面都與平面垂直,且、、都是正三角形。
(1)求證:;
(2)求多面體的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ) 證明:PA⊥BD;
(Ⅱ) 若PD=AD,求二面角A-PB-C的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在斜三棱柱ABC—A1B1C1中,AB⊥側(cè)面BB1C1C,BC=2,BB1=4,AB=,∠BCC1=60°.
(Ⅰ)求證:C1B⊥平面A1B1C1;
(Ⅱ)求A1B與平面ABC所成角的正切值;
(Ⅲ)若E為CC1中點(diǎn),求二面角A—EB1—A1的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知斜三棱柱—,側(cè)面與底面垂直,∠,,且⊥,=.
(1)試判斷與平面是否垂直,并說明理由;
(2)求側(cè)面與底面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知平面是正三角形,且.
(1)設(shè)是線段的中點(diǎn),求證:∥平面;
(2)求直線與平面所成角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com