已知橢圓的中心在坐標原點O,焦點在x軸上,短軸長為2,且兩個焦點和短軸的兩個端點恰為一個正方形的頂點.過右焦點F與x軸不垂直的直線l交橢圓于P,Q兩點.
(1)求橢圓的方程;
(2)當直線l的斜率為1時,求△POQ的面積;
(3)在線段OF上是否存在點M(m,0),使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請說明理由.

【答案】分析:(1)設(shè)橢圓方程為.由兩個焦點和短軸的兩個端點恰為正方形的頂點,且短軸長為2,由此能夠求出a,b,c的值,從而得到所求橢圓方程.
(2)右焦點F(1,0),直線l的方程為y=x-1.設(shè)P(x1,y1),Q(x2,y2),由題設(shè)條件得.由此入手可求出
(3)假設(shè)在線段OF上存在點M(m,0)(0<m<1),使得以MP,MQ為鄰邊的平行四邊形是菱形.因為直線與x軸不垂直,設(shè)直線l的方程為y=k(x-1)(k≠0).由題意知(1+2k2)x2-4k2x+2k2-2=0.由此可知
解答:解:(1)由已知,橢圓方程可設(shè)為.(1分)
∵兩個焦點和短軸的兩個端點恰為正方形的頂點,且短軸長為2,

所求橢圓方程為.(4分)
(2)右焦點F(1,0),直線l的方程為y=x-1.
設(shè)P(x1,y1),Q(x2,y2),
得3y2+2y-1=0,解得
.(9分)
(3)假設(shè)在線段OF上存在點M(m,0)(0<m<1),使得以MP,MQ為鄰邊的平行四邊形是菱形.因為直線與x軸不垂直,所以設(shè)直線l的方程為y=k(x-1)(k≠0).
可得(1+2k2)x2-4k2x+2k2-2=0.
.其中x2-x1≠0
以MP,MQ為鄰邊的平行四邊形是菱形?(x1+x2-2m,y1+y2)(x2-x1,y2-y1)=0?(x1+x2-2m)(x2-x1)+(y1+y2)(y2-y1)=0?(x1+x2-2m)+k(y1+y2)=0?2k2-(2+4k2)m=0
.(14分)
點評:本題考查圓錐曲線的位置關(guān)系,解題時要認真審題,仔細解答.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知橢圓的中心在坐標原點O,焦點在x軸上,短軸長為2,且兩個焦點和短軸的兩個端點恰為一個正方形的頂點.過右焦點F與x軸不垂直的直線l交橢圓于P,Q兩點.
(1)求橢圓的方程;
(2)當直線l的斜率為1時,求△POQ的面積;
(3)在線段OF上是否存在點M(m,0),使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心在坐標原點,且經(jīng)過點M(1,
2
5
5
)
,N(-2,
5
5
)
,若圓C的圓心與橢圓的右焦點重合,圓的半徑恰好等于橢圓的短半軸長,已知點A(x,y)為圓C上的一點.
(1)求橢圓的標準方程和圓的標準方程;
(2)求
AC
AO
+2|
AC
-
AO
|
(O為坐標原點)的取值范圍;
(3)求x2+y2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心在坐標原點,焦點在x軸上,橢圓上點P(3
2
,4)
到兩焦點的距離之和是12,則橢圓的標準方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心在坐標原點,焦點在x軸上,焦距為6
3
,且橢圓上一點到兩個焦點的距離之和為12,則橢圓的方程為
x2
36
+
y2
9
=1
x2
36
+
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心在坐標原點O,焦點在x軸上,離心率為
2
2
,坐標原點O到過右焦點F且斜率為1的直線的距離為
2
2

(1)求橢圓的方程;
(2)設(shè)過右焦點F且與坐標軸不垂直的直線l交橢圓于P、Q兩點,在線段OF上是否存在點M(m,0),使得以MP、MQ為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案