【題目】數(shù)列1,1,3,3,,,…,,是由兩個1,兩個3,兩個,…,兩個按從小到大順序排列,數(shù)列各項的和記為,對于給定的自然數(shù),若能從數(shù)列中選取一些不同位置的項,使得這些項之和恰等于,便稱為一種選項方案,和數(shù)為的所有選項方案的種數(shù)記為.試求:

的值.

【答案】

【解析】

對每個,易知數(shù)列前項之和小于,故形如的項必須從兩個中選出,于是選出一個有二種方法,同時選出兩個只有一種方法.

對于集合中的每一個數(shù),可將其表成

,

其中.

的含有1993位的三進制數(shù)形式.

,,…,中恰是個為1(其余為02),則.

將集合分解為

,

其中中的每個數(shù),在表成上述三進制形式后,數(shù)碼,,…,中恰有個為1,因此,數(shù)集中共有個數(shù),這時,中各數(shù)的值之和為

.

由于集,,,…,兩兩不交,從而

.

.

注意到

即數(shù)列中每項都不選,其方法數(shù).

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)時有最大值和最小值,設.

1)求實數(shù)的值;

2)若不等式上恒成立,求實數(shù)的取值范圍;

3)若關于的方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)若,求曲線在點處的切線方程;

(2)對任意的,恒有,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如表提供了某廠節(jié)能降耗技術改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應的生產(chǎn)能耗(噸標準煤)的幾組對照數(shù)據(jù)

1)請畫出上表數(shù)據(jù)的散點圖;

2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;

3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標準煤.試根據(jù)(2)求出的線性同歸方程,預測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤?(參考數(shù)值

(附,,其中為樣本均值)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知, , .

1)若的充分不必要條件,求實數(shù)的取值范圍;

(2)若,為真命題,“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)則不等式的解集為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠為了對研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):

單價x

9

9.2

9.4

9.6

9.8

10

銷量y

100

94

93

90

85

78

附:對于一組數(shù)據(jù),其回歸直線的斜率的最小二乘估計值為; 本題參考數(shù)值:.

1)若銷量y與單價x服從線性相關關系,求該回歸方程;

2)在(1)的前提下,若該產(chǎn)品的成本是5元/件,問:產(chǎn)品該如何確定單價,可使工廠獲得最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為非空實數(shù)集(至少有兩個元素),若對任意,都有,且,則稱為封閉集,則下列四個判斷:

①集合為封閉集,則為無限集; ②集合為封閉集;

③若集合為封閉集,則為封閉集; ④若為封閉集,則一定有;,

其中正確的命題個數(shù)有( .

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列關于回歸分析的說法中錯誤的是( )

A. 回歸直線一定過樣本中心

B. 殘差圖中殘差點比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型比較合適

C. 兩個模型中殘差平方和越小的模型擬合的效果越好

D. 甲、乙兩個模型的分別約為0.98和0.80,則模型乙的擬合效果更好

查看答案和解析>>

同步練習冊答案