13.已知點(diǎn)(x,y)滿足$\left\{\begin{array}{l}x+2y-8≥0\\ 2x-y-6≤0\\ x-3y+7≥0\end{array}\right.$,則$z=\frac{x+1}{y-1}$的取值范圍為( 。
A.$[{\frac{3}{2},5}]$B.$[{\frac{2}{3},5}]$C.$[{\frac{3}{2},7}]$D.$[{\frac{2}{3},7}]$

分析 首先畫出可行域,利用z的幾何意義:區(qū)域內(nèi)的點(diǎn)與(-1,1)連接直線的斜率的倒數(shù),因此求最值即可.

解答 解:由已知得到平面區(qū)域如圖:$z=\frac{x+1}{y-1}$表示區(qū)域內(nèi)的點(diǎn)與(-1,1)連接的直線斜率的倒數(shù),當(dāng)與A(2,3)連接時(shí)直線斜率最大為$\frac{3-1}{2+1}=\frac{2}{3}$,與B(4,2)連接時(shí)直線斜率最小為$\frac{2-1}{4+1}=\frac{1}{5}$,
所以$z=\frac{x+1}{y-1}$的最大值為5,最小值為$\frac{3}{2}$,所以$z=\frac{x+1}{y-1}$的取值范圍為[$\frac{3}{2}$,5];
故選:A.

點(diǎn)評(píng) 本題考查了簡單線性規(guī)劃問題;一般的,首先正確畫出可行域,然后根據(jù)目標(biāo)函數(shù)的幾何意義求最值;體現(xiàn)了數(shù)形結(jié)合的思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)A,B分別是直線y=$\frac{{2\sqrt{5}}}{5}$x和y=-$\frac{{2\sqrt{5}}}{5}$x上的動(dòng)點(diǎn),且|AB|=2$\sqrt{5}$,設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P滿足$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程;
(Ⅱ)斜率為1不經(jīng)過原點(diǎn)O,且與動(dòng)點(diǎn)P的軌跡相交于C,D兩點(diǎn),M為線段CD的中點(diǎn),直線CD與直線OM能否垂直?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓x2+2y2=1,過原點(diǎn)的兩條直線l1和l2分別于橢圓交于A、B和C、D,記得到平行四邊形ABCD的面積為S.
(1)設(shè)A(x1,y1),C(x2,y2),用A、C的坐標(biāo)表示點(diǎn)C到直線l1的距離,并證明S=|x1y2-x2y1|.
(2)設(shè)l1與l2的斜率之積為$-\frac{1}{2}$,求面積S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)$f(x)=\frac{p}{2}{x^2}-lnx({p∈R})$.
(1)當(dāng)p=2時(shí),求曲線y=f(x)在(1,f(1))處的切線方程;
(2)當(dāng)p>1時(shí),求證:$({p-1})x-f(x)<\frac{{3{e^{p-3}}}}{2p-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知命題p:?x0<0,sinx0>0且tanx0>0,則命題p的否定為( 。
A.?x<0,sinx≤0或tanx≤0B.?x<0,sinx≤0且tanx≤0
C.?x≥0,sinx≤0或tanx≤0D.?x≥0,sinx≤0且tanx≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知三棱柱ABC-A1B1C1中,AA1=B1C=2AB=2AC=2,∠BAC=90°,∠BAA1=120°.
(1)求證:AB⊥平面AB1C;  
(2)求多面體CAA1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若直線y=kx+1(k>0)與雙曲線x2-$\frac{{y}^{2}}{2}$=1有且只有一個(gè)交點(diǎn),則k的值是$\sqrt{2}$或$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.命題:“?x∈R,x2+mx+2≤0”為假命題,是命題|m-1|<2的(  )
A.充分不必要條件B.必要非充分條件C.充要條件D.都不是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)滿足f(logax)=$\frac{a}{{a}^{2}-1}$(x-x-1),其中a>0,a≠1.
(Ⅰ)對(duì)于函數(shù)f(x),當(dāng)x∈(-1,1)時(shí),f(1-m)+f(1-m2)<0,求實(shí)數(shù)m的范圍;
(Ⅱ)當(dāng)x∈(-∞,2)時(shí),f(x)<4恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案