分析 (Ⅰ)令t=logax,則x=at,可求得f(x)=$\frac{a}{{a}^{2}-1}$(ax-a-x),利用指數(shù)函數(shù)的單調性質,可判斷f(x)=$\frac{a}{{a}^{2}-1}$(ax-a-x)為增函數(shù),且為奇函數(shù),于是當x∈(-1,1)時,f(1-m)+f(1-m2)<0,可得$\left\{\begin{array}{l}{-1≤1-m≤1}\\{{-1≤m}^{2}-1≤1}\\{1-m{<m}^{2}-1}\end{array}\right.$,解之即可求得實數(shù)m的范圍;
(Ⅱ)由(Ⅰ)知,f(x)=$\frac{a}{{a}^{2}-1}$(ax-a-x)為R上的增函數(shù),故當x∈(-∞,2)時,f(x)<4恒成立?4>f(x)max,即4≥f(2)=$\frac{a}{{a}^{2}-1}$(a2-a-2),于是可求得實數(shù)a的取值范圍.
解答 解:(Ⅰ)令t=logax,則x=at,f(logax)=$\frac{a}{{a}^{2}-1}$(x-x-1),
可化為:f(t)=$\frac{a}{{a}^{2}-1}$(at-a-t),
即f(x)=$\frac{a}{{a}^{2}-1}$(ax-a-x),
∴當a>1時,$\frac{a}{{a}^{2}-1}$>0,y=g(x)=ax-a-x為增函數(shù),
又g(-x)=-g(x),故y=g(x)=ax-a-x為奇函數(shù),f(x)=$\frac{a}{{a}^{2}-1}$(ax-a-x)為奇函數(shù),
同理,當0<a<1時,f(x)=$\frac{a}{{a}^{2}-1}$(ax-a-x)為增函數(shù).
∵當x∈(-1,1)時,f(1-m)+f(1-m2)<0,
∴f(1-m)<-f(1-m2)=f(m2-1),
∴$\left\{\begin{array}{l}{-1≤1-m≤1}\\{{-1≤m}^{2}-1≤1}\\{1-m{<m}^{2}-1}\end{array}\right.$,解得:1<m≤$\sqrt{2}$.
即實數(shù)m的范圍為(1,$\sqrt{2}$];
(Ⅱ)由(Ⅰ)知,f(x)=$\frac{a}{{a}^{2}-1}$(ax-a-x)為R上的增函數(shù),
∴當x∈(-∞,2)時,f(x)<4恒成立?4>f(x)max,
又當x∈(-∞,2)時,f(x)取不到最大值,
∴4≥f(2)=$\frac{a}{{a}^{2}-1}$(a2-a-2),即$\frac{a}{{a}^{2}-1}$•$\frac{{(a}^{2}+1){(a}^{2}-1)}{{a}^{2}}$≤4,整理得:a+$\frac{1}{a}$≤4,又a≠1,
解得:2-$\sqrt{3}$≤a<1或1<a≤2+$\sqrt{3}$.
∴實數(shù)a的取值范圍為[2-$\sqrt{3}$,1)∪(1,2+$\sqrt{3}$].
點評 本題考查函數(shù)恒成立問題,考查函數(shù)奇偶性與單調性的綜合應用,考查等價轉化思想與函數(shù)方程思想,考查邏輯思維能力與運算能力,屬于難題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[{\frac{3}{2},5}]$ | B. | $[{\frac{2}{3},5}]$ | C. | $[{\frac{3}{2},7}]$ | D. | $[{\frac{2}{3},7}]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(sinA)>f(cosB) | B. | f(cosB)>f(sinA) | C. | f(sinA)>f(sinB) | D. | f(cosB)>f(cosA) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{3}$,$\sqrt{3}$,$\frac{3}{5}$,$\frac{1}{10}$ | B. | $\sqrt{3}$,$\frac{4}{3}$,$\frac{1}{10}$,$\frac{3}{5}$ | C. | $\sqrt{3}$,$\frac{4}{3}$,$\frac{3}{5}$,$\frac{1}{10}$ | D. | $\frac{4}{3}$,$\sqrt{3}$,$\frac{1}{10}$,$\frac{3}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com