方法一:(幾何法)
證明:(1)∵PD⊥底面ABCD,
∴PD⊥BC.又∵DE⊥PC,∴DE⊥平面PBC,
∴DE⊥PB.
又EF⊥PB,∴PB⊥平面DEF.…(6分)
(2)解:由(1)得PB⊥平面DEF,∴PB⊥FD.
又EF⊥PB,∠EFD就是二面角C-PB-D的平面角…(8分)
∵PD=DC=BC=2,∴PC=DB=
.
∵PD⊥DB,∴
,
∴
.
由(1)知DE⊥平面PBC,
∴DE⊥EF.
在
,∴∠EFD=60°
故所求二面角C-PB-D的大小為60°…(12分)
方法二:(向量法)
證明:(1)如圖,以點(diǎn)D為坐標(biāo)原點(diǎn),DA、DC、DP所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系D-xyz,
則D(0,0,0)A(2,0,0),B(2,2,0),
C(0,2,0),P(0,0,2),E(0,1,1)…(1分)
∵
(2)
∵
,∴
,
即PB⊥DE.
又∵EF⊥PB,DE∩EF=E,
∴PB⊥平面DEF.…(6分)
解:(2)設(shè)平面PBC的法向量為n
1=(x,y,z),
則
即
令y=1,得n
1=(0,1,1).
同理可得平面PBD的法向量為n
2=(1,-1,0),
∴
.
∵二面角C-PB-D小于90°,
∴二面角C-PB-D的大小為60°.…(12分)
分析:方法一(幾何法)(1)由已知PD⊥底面ABCD,結(jié)合PD=DC,點(diǎn)E是PC的中點(diǎn),可得PD⊥BC,DE⊥PC,由線面垂直的判定定理可得DE⊥平面PBC,則DE⊥PB,結(jié)合已知中EF⊥PB和線面垂直的判定定理,我們可證得PB⊥平面DEF;
(2)由(1)中結(jié)論P(yáng)B⊥平面DEF,可得PB⊥FD,結(jié)合EF⊥PB,及二面角的定義,可得∠EFD就是二面角C-PB-D的平面角,解Rt△EFD即可得到二面角C-PB-D的大小.
方法二(向量法)(1)以點(diǎn)D為坐標(biāo)原點(diǎn),DA、DC、DP所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系D-xyz,分別求出PB,DE的方向向量,易根據(jù)其數(shù)量積為0得到PB⊥DE結(jié)合EF⊥PB及線面垂直的判定定理可得PB⊥平面DEF;
(2)分別求出平面PBC及平面PBD的法向量,代入向量夾角公式,即可求出二面角C-PB-D的大。
點(diǎn)評:本題考查的知識點(diǎn)是二面角的平面角及求法,直線與平面垂直的判定,其中方法一的關(guān)鍵是熟練掌握線線垂直,線面垂直之間的轉(zhuǎn)化及二面角的定義,方法二的關(guān)鍵是建立空間坐標(biāo)系,將空間線線垂直及二面角問題轉(zhuǎn)化為向量夾角問題.