如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.
分析:(Ⅰ)連接AC,證明AC⊥BD,證明PA⊥BD,PA∩AC=A,推出BD⊥平面PAC,然后證明平面PBD⊥平面PAC         
(Ⅱ)依題意得說明ABD是邊長為
3
的正三角形,然后直接求解,四棱錐P-ABCD的體積V.
解答:解:(Ⅰ)連接AC,∵BC=CD,AB=AD,
∴AC⊥BD,
又PA⊥平面ABCD,且BD?平面ABCD
∴PA⊥BD           
又PA∩AC=A,
∴BD⊥平面PAC                       
又BD?平面BDP
∴平面PBD⊥平面PAC         
(Ⅱ)依題意得∠CBD=∠CDB=30°,
又BC⊥AB,CD⊥AD,
所以∠DBA=∠BDA=60°
又BC=CD=a,
BD=
3
a

∴△ABD是邊長為
3
a的正三角形   
V=
1
3
(S△BCD+S△ABD)•PA
=
1
3
(
1
2
•BC•CD•sin1200+
1
2
•AD•AB•sin600)•a

=
1
6
(
3
2
a2+
3
2
×3a2)•a=
3
3
a3
點評:本題考查直線與平面垂直,平面與平面垂直的證明,幾何體的體積的求法,考查空間想象能力,計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點A在PD上的射影為點G,點E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習冊答案