精英家教網 > 高中數學 > 題目詳情

 

如圖,已知點A、 B是橢圓的兩個頂點,若點 C(t,t)(t>0)在橢圓上,且滿足.(其中O為坐標原點)

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線l與橢圓交于兩點,當時,求 面積的最大值。

 

 

 

 

 

 

 

 

 

 

【答案】

 解:(Ⅰ)由        ……………(1分)

A(a,0),可設C(t,t)且t>0,

,解得.                   ……………(2分)

,,

.     ……(3分)  橢圓的方程為.     …(4分)

(Ⅱ)

在橢圓上,則--------①;--------②;

由①—②得          ……………(6分)

直線MN的方程為,即

聯立,整理得  ……………(7分)

,即 

=;                             ……………(9分)

原點(0,0)到直線MN的距離為               ……………(10分)

當且僅當時取等號,所以面積的最大值為�!�12分)

(其他方法酌情給分)

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,已知點A(-1,0)與點B(1,0),C是圓x2+y2=1上的動點,連接BC并延長至D,使得|CD|=|BC|,求AC與OD的交點P的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,已知點A(3,4),C(2,0),點O為坐標原點,點B在第二象限,且|OB|=3,記∠AOC=θ.高.
(Ⅰ)求sin2θ的值;
(Ⅱ)若AB=7,求△BOC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知點A(-2,0),點P是⊙B:(x-2)2+y2=36上任意一點,線段AP的垂直平分線交BP于點Q,點Q的軌跡記為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)已知⊙O:x2+y2=r2(r>0)的切線l總與曲線C有兩個交點M、N,并且其中一條切線滿足∠MON>90°,求證:對于任意一條切線l總有∠MON>90°.

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�