已知函數(shù)f(x)的反函數(shù)為g(x)=log2x+1,則f(2)=g(2)=

[  ]

A.1

B.2

C.3

D.4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),若對(duì)于任意n?N*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.
(1)若函數(shù)f(x)=
px+1
x+1
確定數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)在(1)條件下,記
n
1
x1
+
1
x2
+…
1
xn
為正數(shù)數(shù)列{xn}的調(diào)和平均數(shù),若dn=
2
an+1
-1
,Sn為數(shù)列{dn}的前n項(xiàng)之和,Hn為數(shù)列{Sn}的調(diào)和平均數(shù),求
lim
n→∞
=
Hn
n
;
(3)已知正數(shù)數(shù)列{cn}的前n項(xiàng)之和Tn=
1
2
(Cn+
n
Cn
)
.求Tn表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年上海市吳淞中學(xué)高三上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y="f" -1(x)能確定數(shù)列{bn},bn=" f" –1(n),若對(duì)于任意nÎN*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.
(1)若函數(shù)f(x)=確定數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)已知正數(shù)數(shù)列{cn}的前n項(xiàng)之和Sn=(cn+).寫(xiě)出Sn表達(dá)式,并證明你的結(jié)論;
(3)在(1)和(2)的條件下,d1=2,當(dāng)n≥2時(shí),設(shè)dn=,Dn是數(shù)列{dn}的前n項(xiàng)之和,且Dn>log a (1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年上海市高三上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f -1(x)能確定數(shù)列{bn},bn= f –1(n),若對(duì)于任意nÎN*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.

   (1)若函數(shù)f(x)=確定數(shù)列{an}的自反數(shù)列為{bn},求an;

   (2)已知正數(shù)數(shù)列{cn}的前n項(xiàng)之和Sn=(cn+).寫(xiě)出Sn表達(dá)式,并證明你的結(jié)論;

   (3)在(1)和(2)的條件下,d1=2,當(dāng)n≥2時(shí),設(shè)dn=,Dn是數(shù)列{dn}的前n項(xiàng)之和,且Dn>log a (1-2a)恒成立,求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.

(1)已知函數(shù)f(x)=2的反函數(shù)為f-1(x)=(x≥0),則由函數(shù)f(x)=2確定的數(shù)列{an}的反數(shù)列為{bn},求{bn}的通項(xiàng)公式;不等式++…+≥1-2a對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)a的范圍;

(2)設(shè)函數(shù)y=3x確定的數(shù)列為{cn},{cn}的反數(shù)列為{dn},{cn}與{dn}的公共項(xiàng)組成的數(shù)列為{tn},求數(shù)列{tn}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分18分)本題共有3個(gè)小題,第1小題滿分3分,第2小題滿分7分,第3小題滿分8分)

       由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f -1(x)能確定數(shù)列{bn},bn= f –1(n),若對(duì)于任意nÎN*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.

   (1)若函數(shù)f(x)=確定數(shù)列{an}的自反數(shù)列為{bn},求an

   (2)已知正數(shù)數(shù)列{cn}的前n項(xiàng)之和Sn=(cn+).寫(xiě)出Sn表達(dá)式,并證明你的結(jié)論;

   (3)在(1)和(2)的條件下,d1=2,當(dāng)n≥2時(shí),設(shè)dn=,Dn是數(shù)列{dn}的前n項(xiàng)之和,且Dn>log a (1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案