13.求下列函數(shù)的導數(shù)
(1)f(x)=(x+1)(x+2)(x+3)
(2)$f(x)={x^2}+\sqrt{x}-{e^x}•cosx$.

分析 (1)將函數(shù)解析式化為多項式的形式,然后利用導數(shù)的運算法則求導;
(2)利用導數(shù)的運算法則分別對各個加數(shù)求導即可.

解答 解:(1)f(x)=x3+6x2+11x+6,則f′(x)=3x2+12x+11;
(2)${f^'}(x)={({x^2})^'}+{({{x^{\frac{1}{2}}}})^'}-[{{{({e^x})}^'}cosx+{e^x}{{({cosx})}^'}}]=2x+\frac{1}{{2\sqrt{x}}}-{e^x}({cosx-sinx})$.

點評 本題考查了導數(shù)的運算;熟記導數(shù)的運算法則以及就不錯大紅色的導數(shù)公式是解答的關鍵;屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.參數(shù)方程$\left\{\begin{array}{l}x=cosθ\\ y=1+cosθ\end{array}\right.$(θ∈R)化為普通方程是x2+(y-1)2=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列命題(a,b表示直線,α表示平面)中正確的是(  )
A.$\left.{\frac{a||b}{b⊥α}}\right\}⇒a⊥α$B.$\left.{\frac{a||b}{b?α}}\right\}⇒a||α$C.$\left.\begin{array}{l}a⊥b\\ b∥α\end{array}\right\}⇒a⊥α$D.$\left.\begin{array}{l}a⊥α\\ a⊥b\end{array}\right\}⇒b?α$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.數(shù)列{an}的前n項和${S_n}=\frac{n}{n+1}$,數(shù)列{bn}的通項公式為bn=n-8,則bnSn的最小值為-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若方程$\frac{x^2}{m-1}+\frac{y^2}{2-m}=1$表示橢圓,則m的取值范圍是(1,1.5)∪(1.5,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.(1)若函數(shù)f(x)=ax2-x-1有且僅有一個零點,求實數(shù)a的值;
(2)若函數(shù)f(x)=|4x-x2|-k有4個零點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知A,B是球O的球面上兩點,∠AOB=90°,C為該球面上的動點,若三棱錐O-ABC體積的最大值為36,則球O的體積為( 。
A.72πB.144πC.288πD.576π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.(1)求過A(1,2)和$B(-\frac{1}{2},1)$兩點的直線的截距方程;
(2)求斜率為$\frac{4}{3}$且與坐標軸圍成的三角形面積是4的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知數(shù)列{an},an=|n-1|+|n-2|+…|n-20|,n∈N+,且1≤n≤20,則a5=( 。
A.190B.160C.130D.10

查看答案和解析>>

同步練習冊答案