3.參數(shù)方程$\left\{\begin{array}{l}x=cosθ\\ y=1+cosθ\end{array}\right.$(θ∈R)化為普通方程是x2+(y-1)2=1.

分析 利用同角三角函數(shù)平方關(guān)系,可得結(jié)論.

解答 解:由題意,消去參數(shù)θ,可得普通方程是x2+(y-1)2=1,
故答案為x2+(y-1)2=1.

點(diǎn)評 本題考查參數(shù)方程化為普通方程,考查同角三角函數(shù)平方關(guān)系,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知拋物線y2=-x與直線y=k(x+1)相交于A,B兩點(diǎn).
(1)求證:OA⊥OB;
(2)是否存k使△OAB的面積等于1,若存在求k的值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.$({ax+\frac{1}{x}}){({\frac{1}{x}-2x})^5}$的展開式各項(xiàng)系數(shù)的和為-3,則展開式中x2的系數(shù)為-80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,PA⊥平面ABC,點(diǎn)C在以AB為直徑的⊙O上,∠CBA=30°,PA=AB=2,點(diǎn)E為線段PB的中點(diǎn),點(diǎn)M在$\widehat{AB}$上,且OM∥AC.
(Ⅰ)求證:平面MOE∥平面PAC;
(Ⅱ)求證:平面PAC⊥平面PCB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.運(yùn)行下面的程序,輸出的結(jié)果是24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知x、y滿足曲線方程x2+$\frac{1}{{y}^{2}}$=2,則x2+y2的取值范圍是( 。
A.[0,+∞)B.[2,+∞)C.[$\frac{1}{2}$,+∞)D.[$\frac{1}{2}$,$\frac{5}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求函數(shù)y=log2(x2+2x)的定義域,值域,單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知復(fù)數(shù)z=$\frac{1}{1+i}$,則(  )
A.z的實(shí)部為-$\frac{1}{2}$B.z的虛部為-$\frac{1}{2}$i
C.|z|=$\frac{1}{2}$D.z的共軛復(fù)數(shù)為$\frac{1}{2}$+$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求下列函數(shù)的導(dǎo)數(shù)
(1)f(x)=(x+1)(x+2)(x+3)
(2)$f(x)={x^2}+\sqrt{x}-{e^x}•cosx$.

查看答案和解析>>

同步練習(xí)冊答案