已知函數(shù)數(shù)學公式
(I)求函數(shù)f(x)的對稱中心和單調(diào)區(qū)間;
(II)已知△ABC內(nèi)角A、B、C的對邊分別為a,b,3,且f(C)=1,若向量數(shù)學公式共線,求a、b的值.

解:(I)==sin(
,則x=,∴函數(shù)f(x)的對稱中心為(,0)(k∈Z);
,可得x∈,∴函數(shù)的單調(diào)增區(qū)間為(k∈Z);令,可得x∈,∴函數(shù)的單調(diào)減區(qū)間為(k∈Z);
(II)∵f(C)=1,∴sin()=1,∵0<C<π,∴C=
∵向量共線,
∴sinB=2sinA,∴b=2a
∵c=3,∴由余弦定理可得a2+b2-ab=9
∴a=,b=2
分析:(I)利用二倍角公式、輔助角公式化簡函數(shù),再利用正弦函數(shù)的性質(zhì),可求函數(shù)f(x)的對稱中心和單調(diào)區(qū)間;
(II)先求C,再利用向量共線及正弦定理、余弦定理,建立方程,即可求a、b的值.
點評:本題考查三角函數(shù)的化簡,考查三角函數(shù)的性質(zhì),考查向量知識的運用,考查正弦、余弦定理,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3+bx2-3x(a,b∈R)在點(1,f(1))處的切線方程為y+2=0.
(I)求函數(shù)f(x)的解析式;
(II)若經(jīng)過點M(2,m)可以作出曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù).

(I)求函數(shù)的最小正周期;

(II)當時,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆北京市東城區(qū)高三年級十校聯(lián)考文科數(shù)學 題型:解答題

(本題滿分14分)已知函數(shù)
(I)求函數(shù)的單調(diào)區(qū)間與極值;
(II)若對于任意恒成立,求實數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年貴州黔東南州高三第二次模擬(5月)考試文科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)

(I)求函數(shù)的最小值;

(II)對于函數(shù)定義域內(nèi)的任意實數(shù),若存在常數(shù),使得不等式都成立,則稱直線是函數(shù)的“分界線”.

設(shè)函數(shù),,試問函數(shù)是否存在“分界線”?若存在,求出“分界線”的方程.若不存在請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆山東省日照市高三上學期測評理科數(shù)學試卷 題型:解答題

已知函數(shù)

(I)求函數(shù)的最小值和最小正周期;

(II)已知△ABC內(nèi)角A,B,C的對邊分別為a,b,c,且,若向量共線,求a,b的值。

 

查看答案和解析>>

同步練習冊答案