已知函數(shù)

(I)求函數(shù)的最小值;

(II)對于函數(shù)定義域內(nèi)的任意實數(shù),若存在常數(shù),使得不等式都成立,則稱直線是函數(shù)的“分界線”.

設(shè)函數(shù),試問函數(shù)是否存在“分界線”?若存在,求出“分界線”的方程.若不存在請說明理由.

 

【答案】

(I);(II)函數(shù)存在“分界線”,方程為

【解析】

試題分析:(I)首先求函數(shù)的定義域,解方程可能的極值點,進一步得的單調(diào)性,最后根據(jù)導函數(shù)在零點附近的變號情況求的最小值;(II)函數(shù)的圖象在處有公共點.設(shè)函數(shù)存在“分界線”,方程為,由對任意恒成立,確定常數(shù),從而得“分界線”的方程為,再證明時也恒成立,最后確定函數(shù)的“分界線”就是直線

試題解析:(I)         

,

所以上單調(diào)遞減,上單調(diào)遞增,      

所以.      

(II)由,可知函數(shù)的圖象在處由公共點.    

設(shè)函數(shù)存在“分界線”,方程為,

應(yīng)有時恒成立,即時恒成立,

于是,得,

則“分界線”的方程為   

,則

,所以上單調(diào)遞增,上單調(diào)遞減,

時,函數(shù)取得最大值,

時恒成立.        

綜上所述,函數(shù)存在“分界線”,方程為        

考點:1、應(yīng)用導數(shù)求函數(shù)極值(最值);2、應(yīng)用導數(shù)研究函數(shù)的性質(zhì).

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=e|lnx|+a|x-1|(a為實數(shù))
(I)若a=1,判斷函數(shù)f(x)在區(qū)間[1,+∞)上的單調(diào)性(不必證明);
(II)若對于任意的x∈(0,1),總有f(x)的函數(shù)值不小于1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x(x-
12
)的定義域為(n,n+1)(n∈N*),f(x)的函數(shù)值中所有整數(shù)的個數(shù)記為g(n).
(1)求出g(3)的值;
(2)求g(n)的表達式;
(3)若對于任意的n∈N*,不等式(Cn0+Cn1+…+Cnn)l≥g(n)-25(其中Cni,i=1,2,3,…,n為組合數(shù))都成立,求實數(shù)l的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆山西大學附中高三4月月考理科數(shù)學試卷(解析版) 題型:解答題

(本小題共12分)已知函數(shù)的 部 分 圖 象如 圖 所示.

(I)求 函 數(shù)的 解 析 式;

(II)在△中,角的 對 邊 分 別 是,若的 取 值 范 圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=e|lnx|+a|x-1|(a為實數(shù))
(I)若a=1,判斷函數(shù)f(x)在區(qū)間[1,+∞)上的單調(diào)性(不必證明);
(II)若對于任意的x∈(0,1),總有f(x)的函數(shù)值不小于1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=x(x-
1
2
)的定義域為(n,n+1)(n∈N*),f(x)的函數(shù)值中所有整數(shù)的個數(shù)記為g(n).
(1)求出g(3)的值;
(2)求g(n)的表達式;
(3)若對于任意的n∈N*,不等式(Cn0+Cn1+…+Cnn)l≥g(n)-25(其中Cni,i=1,2,3,…,n為組合數(shù))都成立,求實數(shù)l的最小值.

查看答案和解析>>

同步練習冊答案