【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),對(duì)任意的,都有成立,求的取值范圍.
【答案】(1)具體見(jiàn)解析;(2)
【解析】
(1)先求出函數(shù)的導(dǎo)函數(shù),然后通過(guò)分類討論解不等式即可求解;
(2)可轉(zhuǎn)化為當(dāng)時(shí),函數(shù)的最小值大于的最大值問(wèn)題進(jìn)行處理.
解:(1)由題意知,函數(shù)的定義域?yàn)?/span>,
則
①當(dāng)時(shí),,令,解得.
當(dāng)時(shí),,當(dāng)時(shí),,
∴在上單調(diào)遞減,在上單調(diào)遞增.
②當(dāng)時(shí),令,解得.
當(dāng)時(shí),,則或時(shí),,時(shí),,
∴在和上單調(diào)遞減,在上單調(diào)遞增.
當(dāng)時(shí),,∴在上單調(diào)遞減.
當(dāng)時(shí),,則或時(shí),時(shí),,
∴在和上單調(diào)遞減,在上單調(diào)遞增.
綜上,當(dāng)時(shí),在和上單調(diào)遞減,在上單調(diào)遞增;
當(dāng)時(shí),在上單調(diào)遞減;
當(dāng)時(shí),在和上單調(diào)遞減,在上單調(diào)遞增;
當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.
(2)對(duì)任意的,都有成立,
等價(jià)于時(shí),.
由(1)得,當(dāng)時(shí),在上單調(diào)遞增,
∴在上的最小值.
∵,
∴,
令,
則,
∴當(dāng)時(shí),單調(diào)遞減,
∴當(dāng)時(shí),,
∴當(dāng)時(shí),單調(diào)遞增,
則.
∴,
∴,
∴.
故的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),函數(shù)的圖象在點(diǎn)處的切線方程為.
(1)討論的導(dǎo)函數(shù)的零點(diǎn)的個(gè)數(shù);
(2)若,且在上的最小值為,證明:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)為橢圓上一點(diǎn),其中為橢圓的離心率,橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍.
(1)求橢圓的方程;
(2)已知,(均不與點(diǎn)重合)是該橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),當(dāng)的面積最大時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,
(1)求在處的切線方程以及的單調(diào)性;
(2)對(duì),有恒成立,求的最大整數(shù)解;
(3)令,若有兩個(gè)零點(diǎn)分別為,且為的唯一的極值點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)統(tǒng)計(jì),某蔬菜基地西紅柿畝產(chǎn)量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對(duì)應(yīng)數(shù)據(jù)的散點(diǎn)圖,如圖所示.
(1)依據(jù)數(shù)據(jù)的散點(diǎn)圖可以看出,可用線性回歸模型擬合與的關(guān)系,請(qǐng)計(jì)算相關(guān)系數(shù)并加以說(shuō)明(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);
(2)求關(guān)于的回歸方程,并預(yù)測(cè)液體肥料每畝使用量為千克時(shí),西紅柿畝產(chǎn)量的增加量約為多少?
附:相關(guān)系數(shù)公式,回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)在拋物線上,過(guò)點(diǎn)的直線與拋物線交于A,B兩點(diǎn),又過(guò)A,B兩點(diǎn)分作拋物線的切線,兩條切線交于P點(diǎn).記直線PA、PB的斜率分別為和.
(1)求的值;
(2),,求四邊形PAEG面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知可導(dǎo)函數(shù)f(x)的定義域?yàn)?/span>,且滿足,,則對(duì)任意的,“”是“”的( )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列和等比數(shù)列的各項(xiàng)均為整數(shù),它們的前項(xiàng)和分別為,且,.
(1)求數(shù)列,的通項(xiàng)公式;
(2)求;
(3)是否存在正整數(shù),使得恰好是數(shù)列或中的項(xiàng)?若存在,求出所有滿足條件的的值;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com